
Angle Sum Property of a Triangle

Let us prove the Angle sum property of triangle that the sum of the measures of the three angles of a triangle is equal to 180°, using the property of parallel lines. **Given:** A triangle ABC **To prove:** $\angle A + \angle B + \angle C = 180^{\circ}$ **Construction:** draw a line DE parallel to the side BC of the given triangle. **Proof:** Since DE is a straight line, it can be concluded that: $\angle DAB + \angle BAC + \angle EAC = 180^{\circ}$ (1) E Since DE||BC and AB, AC are transversals, Therefore, $\angle EAC = \angle ACB$ (a pair of alternate angles) Also, $\angle DAB = \angle CBA$ (a pair of alternate angles) Substituting the value of \angle EAC and \angle DAB in equation (1), $\angle ACB + \angle BAC + \angle CBA = 180^{\circ}$ Thus, the sum of the interior angles of a triangle is 180°. Let us understand with an example: Example: Sameera needs to find the measure of the third angle of a triangle ABC

in which $\angle ABC = 45^{\circ}$ and $\angle ACB = 55^{\circ}$. Can you help her?

Solution:

We know that $\angle ABC = 45^{\circ}$ and $\angle ACB = 55^{\circ}$. Using the Angle Sum Property of a triangle, $\angle A + \angle B + \angle C = 180$, $\angle A + 45 + 55^{\circ} = 180^{\circ}$, $\angle A + 100^{\circ} = 180^{\circ}$, $\angle A = 180^{\circ} - 100^{\circ}$, $\angle A = 80^{\circ}$. Therefore, the third angle: $\angle A = 80^{\circ}$

