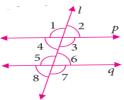

Angles formed when a transversal cuts two lines

Angles made by Transversal

When a transversal cuts two or more straight lines, the angles formed are identified by different names by virtue of their position.

Name	Angles
Interior angles	∠3,∠4,∠5,∠6
Exterior angles	∠1, ∠2, ∠7, ∠8
Pairs of corresponding angles	$\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$
	$\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$
Pairs of alternate interior angles	$\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$
Pairs of alternate exterior angles	$\angle 1$ and $\angle 7$, $\angle 2$ and $\angle 8$
Pairs of interior angles on the same	
side of the transversal	$\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$


Angles formed when a transversal cuts two lines

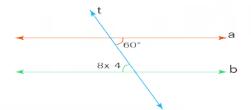
In figure p||q and transversal /cuts p and q forming angles as shown. Then,

1. the pair of corresponding angles are equal in measure, that is, $\angle 1 = \angle 5$,

 $\angle 2 = \angle 6$, $\angle 3 = \angle 7$, and $\angle 4 = \angle 8$

- 2. the pair of alternate interior angles are equal in measure, that is, $\angle 3 = \angle 5$, and $\angle 4 = \angle 6$
- 3. the pair of alternate exterior angles are equal in measure, that is, $\angle 1 = \angle 7$, and $\angle 2 = \angle 8$
- 4. the pair of consecutive interior angles are supplementary, that is, $\angle 4 + \angle 5 = 180^{\circ}$, and $\angle 3 + \angle 6 = 180^{\circ}$.

The above results may be summarised as follows.


When any two parallel lines are cut by a transversal, they acquire some properties. In other words, any two lines can be termed as parallel lines if the following conditions related to the angles are fulfilled.

- Any two lines that are intersected by a transversal are said to be parallel if the corresponding angles are equal.
- Any two lines that are intersected by a transversal are said to be parallel if the alternate interior angles are equal.
- Any two lines that are intersected by a transversal are said to be parallel if the alternate exterior angles are equal.
- Any two lines that are intersected by a transversal are said to be parallel if the consecutive interior angles are supplementary.

Let us understand with an example:

Example: Find the value of x in the given parallel lines 'a' and 'b', cut by a transversal 't'.

Angles formed when a transversal cuts two lines

Solution: The given parallel lines are cut by a transversal, therefore, the marked angles in the figure are the alternate interior angles which are equal in measure.

This means, $8x - 4 = 60^{\circ}$, and 8x = 64, x = 8.

Therefore, the value of x = 8.