Matrices

1. Definition

A rectangular arrangement of numbers in rows and columns, is called a Matrix. This arrangement is enclosed by small () or big [] brackets. A matrix is represented by capital letters A, B, C etc. and its element are by small letters a, b, c, x, y etc.

2. Order of a Matrix

A matrix which has m rows and n columns is called a matrix of order $m \times n$.

A matrix A of order $m \times n$ is usually written in the following manner-

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{23} & a_{23} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{ij} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} \text{ or }$$

 $A = [a_{ij}]_{m \times n} \text{ where } i = 1, 2, \dots, n$

Here a_{ij} denotes the element of i^{th} row and j^{th} column.

3. Types of Matrices

3.1 Row matrix :

If in a Matrix, there is only one row, then it is called a Row Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a row matrix if m = 1.

3.2 Column Matrix :

If in a Matrix, there is only one column, then it is called a Column Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a Column Matrix if n = 1.

3.3 Square Matrix :

If number of rows and number of column in a Matrix are equal, then it is called a Square Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a Square Matrix if m = n

Note :

- (a) If m ≠ n then Matrix is called a Rectangular Matrix.
- (b) The elements of a Square Matrix A for which i = j i.e. a_{11} , a_{22} , a_{33} , a_{nn} are called diagonal elements and the line joining these elements is called the principal diagonal or of leading diagonal of Matrix A.
- (c) **Trance of a Matrix :** The sum of diagonal elements of a square matrix . A is called the trance of Matrix A which is denoted by tr A.

tr A =
$$\sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}$$

3.4 Singleton Matrix :

If in a Matrix there is only one element then it is called Singleton Matrix. Thus

 $A = [a_{ij}]_{m \times n}$ is a Singleton Matrix if m = n = 1.

3.5 Null or Zero Matrix :

If in a Matrix all the elements are zero then it is called a zero Matrix and it is generally denoted by O.

Thus $A = [a_{ij}]_{m \times n}$ is a zero matrix if $a_{ij} = 0$ for all i and j.

3.6 Diagonal Matrix :

If all elements except the principal diagonal in a **Square Matrix** are zero, it is called a Diagonal Matrix. Thus a Square Matrix

A = $[a_{ij}]$ is a Diagonal Matrix if $a_{ij} = 0$, when $i \neq j$

Note :

- (a) No element of Principal Diagonal in diagonal Matrix is zero.
- (b) Number of zero in a diagonal matrix is given by $n^2 n$ where n is a order of the Matrix.

3.7 Scalar Matrix :

If all the elements of the diagonal of a **diagonal matrix** are equal, it is called a scalar matrix. Thus a Square Matrix $A = [a_{ij}]$ is a Scalar Matrix is

Power by: VISIONet Info Solution Pvt. Ltd		
Website : www.edubull.com	Mob no. : +91-9350679141	

$$a_{ij} = \begin{cases} 0 & i \neq j \\ k & i = j \end{cases}$$
 where k is a constant.

3.8 Unit Matrix :

If all elements of principal diagonal in a **Diagonal Matrix** are 1, then it is called Unit Matrix. A unit Matrix of order n is denoted by I_n .

Thus a square Matrix

Note :

Every unit Matrix is a Scalar Matrix.

3.9 Triangular Matrix :

A Square Matrix $[a_{ij}]$ is said to be triangular matrix if each element above or below the principal diagonal is zero it is of two types-

- (a) Upper Triangular Matrix : A Square Matrix [a_{ij}] is called the upper triangular Matrix, if a_{ii} = 0 when i > j.
- (b) Lower Triangular Matrix : A Square Matrix [a_{ii}] is called the lower Triangular Matrix, if

 $a_{ij} = 0$ when i < j

Note :

Minimum number of zero in a triangular matrix is n(n-1)

given by $\frac{n(n-1)}{2}$ where n is order of Matrix.

3.10 Equal Matrix :

Two Matrix A and B are said to be equal Matrix if they are of same order and their corresponding elements are equal.

3.11 Singular Matrix :

Matrix A is said to be singular matrix if its determinant |A| = 0, otherwise non- singular matrix i.e.

If $det | A | = 0 \Rightarrow$ Singular

and det $|A| \neq 0 \implies$ non-singular

4. Addition and Subtraction of Matrices

If A $[a_{ij}]_{m \times n}$ and $[b_{ij}]_{m \times n}$ are two matrices of the same order then their sum A + B is a matrix whose each element is the sum of corresponding element.

i.e.
$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Similarly their subtraction A - B is defined as

 $\mathbf{A} - \mathbf{B} = [\mathbf{a}_{ij} - \mathbf{b}_{ij}]_{m \times n}$

Note :

Matrix addition and subtraction can be possible only when Matrices are of same order.

4.1 Properties of Matrices addition :

If A, B and C are Matrices of same order, then-

- (i) A + B = B + A (Commutative Law)
- (ii) (A+B) + C = A + (B + C) (Associative Law)
- (iii) A + O = O + A = A, where O is zero matrix which is additive identity of the matrix.
- (iv) A + (-A) = 0 = (-A) + A where (-A) is obtained by changing the sign of every element of A which is additive inverse of the Matrix
- (v) $\begin{cases} A+B=A+C \\ B+A=C+A \end{cases} \Rightarrow B = C \text{ (Cancellation Law)}$

(vi) tr $(A \pm B) = tr (A) \pm tr (B)$

5. Scalar Multiplication of Matrices

Let $A = [a_{ij}]_{m \times n}$ be a matrix and k be a number then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by

kA thus if $A = [a_{ij}]_{m \times n}$ then

 $kA = Ak = [ka_{ij}]_{m \times n}$

5.1 Properties of Scalar Multiplication :

If A, B are Matrices of the same order and $\lambda,\,\mu$ are any two scalars then -

(i) $\lambda(A+B) = \lambda A + \lambda B$

(ii) $(\lambda + \mu) A = \lambda A + \mu A$

Power by: VISIONET Into Solution Pvt. Ltd		
Website : www.edubull.com	Mob no. : +91-9350679141	

(iii)
$$\lambda(\mu A) = (\lambda \mu) A = \mu(\lambda A)$$

(iv) $(-\lambda A) = - (\lambda A) = \lambda(-A)$
(v) tr $(kA) = k$ tr (A)

6. Multiplication of Matrices

If A and B be any two matrices, then their product AB will be defined only when number of column in A is equal to the number of rows in B. If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ then their product $AB = C = [c_{ij}]$, will be matrix of order $m \times p$, where

$$(AB)_{ij} = C_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$$

6.1 Properties of Matrix Multiplication :

If A, B and C are three matrices such that their product is defined, then

- (i) $AB \neq BA$ (Generally not commutative)
- (ii) (AB) C = A (BC) (Associative Law)
- (iii) IA = A = AI

I is identity matrix for matrix multiplication

- (iv) A(B + C) = AB + AC (Distributive Law)
- (v) If $AB = AC \Rightarrow B = C$

(Cancellation Law is not applicable)

- (vi) If AB = 0. It does not mean that A = 0 or B = 0, again product of two non- zero matrix may be zero matrix.
- (vii) tr (AB) = tr (BA)

Note :

- (i) The multiplication of two diagonal matrices is again a diagonal matrix.
- (ii) The multiplication of two triangular matrices is again a triangular matrix.
- (iii) The multiplication of two scalar matrices is also a scalar matrix.
- (iv) If A and B are two matrices of the same order, then
 - (a) $(A + B)^2 = A^2 + B^2 + AB + BA$

(b) $(A - B)^2 = A^2 + B^2 - AB - BA$

- (c) $(A B) (A + B) = A^2 B^2 + AB BA$
- (d) $(A+B)(A-B) = A^2 B^2 AB + BA$
- (e) A(-B) = (-A) B = -(AB)

6.2 Positive Integral powers of a Matrix :

The positive integral powers of a matrix A are defined only when A is a square matrix. Also then

$$A^2 = A.A \qquad A^3 = A.A.A = A^2A$$

Also for any positive integers m,n

- (i) $A^m A^n = A^{m+n}$
- (ii) $(A^m)^n = A^{mn} = (A^n)^m$
- (iii) $I^n = I, I^m = I$

(iv) $A^{\circ} = I_n$ where A is a square matrices of order n.

7. **Transpose of a Matrix**

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of Matrix A and is denoted by A^{T} or A'.

From the definition it is obvious that

If order of A is $m \times n$, then order of A^T is $n \times m$.

7.1 Properties of Transpose :

(i)
$$(A^{T})^{T} = A$$

(ii) $(A \pm B)^{T} = A^{T} \pm B^{T}$
(iii) $(AB)^{T} = B^{T} A^{T}$
(iv) $(kA)^{T} = k(A)^{T}$
(v) $(A_{1}A_{2}A_{3} \dots A_{n-1}A_{n})^{T}$
 $= A_{n}^{T} A_{n-1}^{T} \dots A_{3}^{T} A_{2}^{T} A_{1}^{T}$

(vi) $I^T = I$

(vii) tr (A) = tr (A^T)

- 8. Symmetric & Skew-Symmetric Matrix
 - (a) Symmetric Matrix : A square matrix A = [a_{ij}] is called symmetric matrix if a_{ij} = a_{ji} for all i,j or A^T = A

Mob no. : +91-9350679141

Note :

- (i) Every unit matrix and square zero matrix are symmetric matrices.
- (ii) Maximum number of different element in a symmetric matrix is $\frac{n(n+1)}{2}$.
- (b) Skew Symmetric Matrix : A square matrix A = [a_{ij}] is called

skew - symmetric matrix if

$$a_{ij} = -a_{ji}$$
 for all i, j

or $A^T = -A$

Note :

 (i) All Principal diagonal elements of a skew symmetric matrix are always zero because for any diagonal element –

$$a_{ii} = -a_{ii} \Longrightarrow a_{ii} = 0$$

- (ii) Trace of a skew symmetric matrix is always 0
- 8.1 Properties of Symmetric and skew- symmetric matrices :
 - (i) If A is a square matrix, then $A + A^{T}$, AA^{T} , $A^{T}A$ are symmetric matrices while $A A^{T}$ is Skew-Symmetric Matrices.
 - (ii) If A is a Symmetric Matrix, then -A, KA, A^{T} , A^{n} , A^{-1} , $B^{T}AB$ are also symmetric matrices where $n \in N$, $K \in R$ and B is a square matrix of order that of A.
 - (iii) If A is a skew symmetric matrix, then-
 - (a) A^{2n} is a symmetric matrix for $n \in N$
 - (b) A^{2n+1} is a skew-symmetric matrices for $n \in N$
 - (c) kA is also skew-symmetric matrix where $k \in R$.
 - (d) B^T AB is also skew-symmetric matrix where B is a square matrix of order that of A
 - (iv) If A, B are two symmetric matrices, then-
 - (a) A \pm B, AB + BA are also symmetric matrices.
 - (b) AB BA is a skew symmetric matrix.

(c) AB is a symmetric matrix when AB = BA.

- (v) If A, B are two skew-symmetric matrices, then-
 - (a) A \pm B, AB BA are skew-symmetric matrices.
 - (b) AB + BA is a symmetric matrix.
- (vi) If A is a skew symmetric matrix and C is a column matrix, then $C^{T} AC$ is a zero matrix.
- (vii) Every square matrix A can uniquelly be expressed as sum of a symmetric and skew symmetric matrix i.e.

$$\mathbf{A} = \left[\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})\right] + \left[\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}})\right]$$

9. Determinant of a Matrix

If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 be a square matrix, then

its determinant, denoted by |A| or Det (A) is defined as

$$|\mathbf{A}| = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

9.1 Properties of the Determinant of a matrix :

- (i) |A| exists $\Leftrightarrow A$ is a square matrix
- (ii) |AB| = |A| |B|
- (iii) $|A^{T}| = |A|$
- (iv) $|kA| = k^n |A|$, if A is a square matrix of order n.
- (v) If A and B are square matrices of same order then |AB| = |BA|
- (vi) If A is a skew symmetric matrix of odd order then |A| = 0

(vii)If $A = diag (a_1, a_2, \dots, a_n)$ then $|A| = a_1 a_2 \dots a_n$

 $(viii) |A|^n = |A^n|, n \in N.$

10. Adjoint of a Matrix

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A

Thus if $A = [a_{ij}]$ be a square matrix and F^{ij} be the cofactor of a_{ij} in |A|, then

$$\begin{split} Adj \ &A = [F^{ij}]^T \\ Hence \ if \ &A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ddots & \ddots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix}, \ then \\ Adj \ &A = \begin{bmatrix} F_{11} & F_{12} & \ldots & F_{1n} \\ F_{21} & F_{22} & \ldots & F_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ F_{n1} & F_{n2} & \ldots & F_{nn} \end{bmatrix}^T \end{split}$$

10.1 Properties of adjoint matrix :

If A, B are square matrices of order n and I_n is corresponding unit matrix, then

(i) A $(adj A) = |A| I_n = (adj A) A$

(Thus A (adj A) is always a scalar matrix)

- (ii) $|adj A| = |A|^{n-1}$
- (iii) adj (adj A) = $|A|^{n-2} A$
- (iv) $|adj (adj A)| = |A|^{(n-1)^2}$
- (v) $adj (A^T) = (adj A)^T$
- (vi) adj (AB) = (adj B) (adj A)
- (vii) adj $(A^m) = (adj A)^m, m \in N$
- (viii) adj (kA) = k^{n-1} (adj A), $k \in \mathbb{R}$
- (ix) adj $(I_n) = I_n$
- (x) adj 0 = 0
- (xi) A is symmetric \Rightarrow adj A is also symmetric
- (xii) A is diagonal \Rightarrow adj A is also diagonal
- (xiii) A is triangular \Rightarrow adj A is also triangular
- (xiv) A is singular \Rightarrow |adj A| = 0

11. Inverse of a Matrix

If A and B are two matrices such that

$$AB = I = BA$$

then B is called the inverse of A and it is denoted by A^{-1} , thus

$$A^{-1} = B \iff AB = I = BA$$

To find inverse matrix of a given matrix A we use following formula

$$A^{-1} = \frac{adjA}{|A|}$$

Thus A^{-1} exists $\Leftrightarrow |A| \neq 0$

Note :

- (i) Matrix A is called invertible if A^{-1} exists.
- (ii) Inverse of a matrix is unique.

11.1 Properties of Inverse Matrix :

Let A and B are two invertible matrices of the same order, then

- (i) $(A^{T})^{-1} = (A^{-1})^{T}$
- $(ii) (AB)^{-1} = B^{-1} A^{-1}$
- (iii) $(A^k)^{-1} = (A^{-1})^k, k \in N$
- (iv) adj $(A^{-1}) = (adj A)^{-1}$

(v)
$$(A^{-1})^{-1} = A$$

(vi)
$$|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|} = |\mathbf{A}|^{-1}$$

(vii) If $A = \text{diag} (a_1, a_2, \dots, a_n)$, then

 $A^{-1} = diag (a_1^{-1}, a_2^{-1}, \dots, a_n^{-1})$

- (viii) A is symmetric matrix \Rightarrow A⁻¹ is symmetric matrix.
- (ix) A is triangular matrix and $|A| \neq 0 \Rightarrow A^{-1}$ is a triangular matrix.
- (x) A is scalar matrix $\Rightarrow A^{-1}$ is scalar matrix.
- (xi) A is diagonal matrix \Rightarrow A⁻¹ is diagonal matrix.

(xii)
$$AB = AC \Rightarrow B = C$$
, iff $|A| \neq 0$