
Volumes of Solid Figures

Volume of a Cube

A cube is a three-dimensional box-like figure represented in the three-dimensional plane. A cube has 66 square-shaped equal faces.

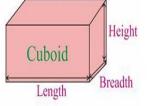
The volume of a cube is equal to the product of the edge length three times.

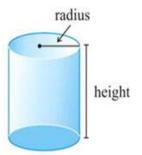
If each edge length is "a" then the, the volume of a cube is a^3 . V = a^3 cubic units

Volume of a Cuboid

A cuboid is a three-dimensional box-like figure represented in the three-dimensional plane.

The volume of a cuboid is obtained by multiplying the length, breadth, and height.


The Volume of a Cuboid is V = length × breadth × height V = (I × b × h) cubic units


Volume of a Cylinder

The volume of a cylinder is the amount of space occupied by matter inside a cylinder or the measure of the capacity of a cylinder.

The volume of a cylinder is the same as the product of the area of the circular base and the height of the cylinder.

Volume of a cylinder = Area of a circle × Height of a Cylinder Area of circle, $A = \pi r^2$

Volumes of Solid Figures

Height of the right circular cylinder is h

Volume of a cylinder = $\pi r^2 h$ V = $\pi r^2 h$ cubic units

Volume of a Sphere

The volume of a sphere can be written as the product of the area of the circle and its thickness.

The volume of a sphere is $V = (4/3) \pi r^3$ cubic units, where r is the radius of the sphere.

Volume of a Cone

Commonly, we know a cone is like a pyramid with a circular base. We can find the volume of a cone if its height and radius are given.

Where, $r \rightarrow$ radius of the circular base, $h \rightarrow$ height and $l \rightarrow$ slant height of the cone.

Hence, the volume of a cone $V = (1/3) \pi r^2 h$ cubic units

Let us understand with some examples:

Example 1: Find the volume of a cuboid of length 20cm, breadth 12cm, height 10cm.

Solution: Given:- length =20cm, breadth =12cm, height =10cm. Volume of a Cuboid = length × breadth × height

 $\Rightarrow V = 20 \times 12 \times 10$ $\Rightarrow V = 2400 \text{ cm}^3$

Hence, the obtained Volume of a Cuboid is **2400cm³**

Volumes of Solid Figures

Example: Find the volume of the largest cone that can be carved out of a cube

of side 16.8 cm.

Solution: From the given,

Side of a cube= 16.8 cmHeight of the cone Side of a cube =16.8 cmDiameter of the cone=16.8cmThen, the radius of the cone (r)=16.8/2=8.4 cm

We know that,

The volume of a cone V = $1/3 \times \pi \times r^2h$ V = $1/3 \times 22/7 \times (8.4)^2 \times 16.8$

V = 1241.86cm³