Powers with Negative Exponents

Powers with Negative Exponents:

Definition: Powers with negative exponents represent the reciprocal or the inverse of a number raised to a positive exponent. In other words, if you have a number raised to a negative exponent, you can rewrite it as the reciprocal of the same number raised to the positive exponent.

General Form: If "a" is a non zero number, and "n" is a positive integer, then $a^{-n} = \frac{1}{a^n}$

Examples:

RF -

i. $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ ii. $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$ iii. $x^{-4} = \frac{1}{x^4}$

Negative Exponents Rule: When you have a number with negative exponents, you can move it to the denominator of a fraction by changing the sign of the exponents to positive.

Zero Exponents Rule: Any non-zero number raised to the power of 0 is always 1. So, $a^0 = 1$ for any non-zero "a"

Properties of Negative Exponents:

When you multiply two numbers with negative exponents, the exponents add up to zero.

For example, $a^{-2} \cdot a^2 = a^{(-2+2)} = a^0 = 1$

When you divide two numbers with negative exponents, the exponents subtract from each other.

For example, $\frac{b^{-3}}{b^{-1}} = b^{(-3-(-1))} = b^{-2}$.

When you raise a number with negative exponents to another power, you multiply the exponents.

For example, $(c^{-2})^3 = c^{(-2.3)} = c^{-6}$.

Examples of simplification:

i.
$$3^{-2} \cdot 3^4 = 3^{(-2+4)} = 3^0 = 9$$

ii.
$$\frac{2^{-3}}{2^{-3}} = 2^{(-3 - (-5))} = 2^2 = 4$$

iii.
$$(4^{-2})^3 = 4^{(-2.3)} = 4^{-6}$$
.

R