HYDROCARBONS

5.0 ALKANES

5.1.1 Introduction of Alkanes

(a) Branched and unbranched aliphatic saturated open chain hydrocarbons are called member of alkanes.

(b) CH₄ is also known as Marsh gas (fire damp).

(c) Calore gas : Mixture of n-butane and isobutane.

(d) LPG (Liquefied petroleum gas) : liquid propane, isobutane.

(e) Natural gas : 80% methane + 10% ethane + 10% propane + small amounts of H_2 , N_2 , CO_2 etc.

(f) Water gas : $CO + H_2 (1 : 1)$

(g) Synthesis gas : $CO + 3H_2 (1:3)$

5.1.2 General Methods of Preparation

(1) From alkenes and alkynes (Sabatier and Senderens reaction) or (By hydrogenation of alkenes and alkynes) : Alkenes and alkynes on catalytic hydrogenation give alkanes.

 $\begin{array}{ccc} R-CH=CH-R+H_2 & \xrightarrow{Catalyst} & R-CH_2-CH_2-R\\ Alkene & Alkane\\ R-C=C-R+2H_2 & \xrightarrow{Catalyst} & R-CH_2-CH_2-R\\ Alkyne & \end{array}$

Catalyst :

- (a) Pd/Pt at ordinary temperature and pressure_
- (b) Ni, 200-300° C (sabatier)
- (c) Raney Nickel at room temp.
- (d) Methane can not be prepared by this method

(2) From alkyl Halides (By reduction) :

 $R-X \xrightarrow{2H} R-H + HX$

Catalyst :

(i) Zn + HCl(iv) Red P + HI (ii) $Zn + CH_3 COOH$ (v) AI - Hg + ethanol (iii) Zn–Cu couple in C₂H₅OH

GOLDEN KEY POINTS

- Alkyl halides can also be reduced to alkane by H/Pd or $LiAlH_4$ or H_2/Ni .
 - Halogen atom of alkyl halide is replaced by hydrogen atom to obtain an alkane.
- (3) **From alkyl halide (By Wurtz reaction):** A solution of alkyl halide in ether on heating with sodium gives alkane.

 $R-X + 2Na + X-R \xrightarrow{Dry} R-R + 2NaX$

(a) Two moles of alkyl halide are treated with Nain presence of dry ether. If ether is wet then we obtain alcohol.

 $2Na + H_2O \longrightarrow 2NaOH + H_2$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

$CH_3I+ NaOH \longrightarrow CH_3OH + NaI$ Methanol

- Methane cannot be prepared by this method. The alkane produced is higher and (b) symmetrical i.e. it contains double the number of carbon atoms present in the alkyl halide taken.
- Two different alkyl halides, on wurtz reaction give all possible alkanes. (c)
- The separation of mixture into individual members is not easy because their B.P. are (d) near to each other and thus wurtz reaction is not suitable for the synthesis of alkanes containing odd number of carbon atom.
- (4) **From Frankland Reagent:**

 $R-X + 2Zn + RX \longrightarrow R_2Zn + ZnX_2$ Frankland reagent $R_2Zn + R - X \longrightarrow R - R + RZnX$

(5) From Carboxylic Acid (By decarboxylation): Sodium salt of saturated monocarboxylic acid on dry distillation with sodalime give alkane.

RCOONa + NaOH $\xrightarrow{\Delta}$ R-H + Na₂CO₃

Note :- Sodalime \Rightarrow NaOH + CaO

GOLDEN KEY POINTS

- The process of elimination of Carbon-di-oxide from Carboxylic acid called decarboxylation.
- The alkane formed by decarboxylation contain's one carbon atom less' than the original acid.
- Decarboxylation of sodium formate gives H₂

 $\begin{pmatrix} HCOONa + NaOH(CaO) \xrightarrow{\Delta} H_2 + Na_2CO_3 \\ CH_3COONa + NaOH + CaO \xrightarrow{\Delta} CH_4 + Na_2CO_3 \end{pmatrix}$

If in a compound two carboxylic groups are present and they are attached to same carbon atom then decarboxylation of one of the carboxylic groups takes place simply on heating.

$$CH_2 \langle COOH \longrightarrow CH_3COOH + CO_2 \rangle$$

- CH_3 - CH_2 - CH_3 can be prepared by Butanoic acid and 2-Methyl propanoic acid.
- P-Keto acids are decarboxylated readily simply on heating (soda lime is not required)

$$\begin{array}{ccc} R - C - CH_2COOH & \stackrel{\Delta}{\longrightarrow} R - C - CH_3 \\ \parallel & & \parallel \\ O & & O \end{array}$$

(6) From carboxylic acid (By Kolbe's electrolysis process) : Alkanes are formed on electrolysis of concentrated aqueous solution of sodium or potassium salt of saturated monocarboxylic acids.

$$2\text{RCOONa} + 2\text{H}_2\text{O} \xrightarrow{\text{Electrolysis}} \underbrace{\text{R} - \text{R} + 2\text{CO}_2}_{\text{At Anode}} + \underbrace{2\text{NaOH} + \text{H}_2}_{\text{At Cathode}}$$

$$2C_2H_5 - COONa \xrightarrow{electro.}{2H_2O} C_2H_5 - C_2H_5 + 2CO_2 + 2NaOH + H_2$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Electrolysis of an acid salt gives symmetrical alkane, However in case of a mixture of Carboxylic acid salts, all probable alkanes are formed. R'COOK + R"COOK → Electrolysis → (R'-R" + R'-R" + R"-R") + 2CO₂ + H₂ +2NaOH At anode alkane and CO₂ gas is formed while at cathode NaOH and H₂ gas is formed. The concentration of NaOH in solution is increased with time so pH of solution is also increased. (7) From alkanol, alkanals, Alkanone and alkanoic acid (By reduction) : The reduction of either of the above compound in presence of red P and HI gives corresponding alkane. R-OH + 2HI → R-H + H₂O + I₂ R-CHO + 4HI → RCH₂ + H₂O + 2I₂

 $\begin{array}{l} R-CHO + 4HI \xrightarrow{\text{RedP}} RCH_3 + H_2O + 2I_2 \\ R-CO-R + 4HI \xrightarrow{\text{RedP}} R-CH_2 - R + H_2O + 2I_2 \\ RCOOH + 6HI \xrightarrow{\text{RedP}} R-CH_3 + H_2O + 3I_2 \end{array}$

In the above reaction I_2 is formed which may react with alkane to form alkyl halide. So red P is added in the reaction to remove I_2 formed in the reaction.

$$R-CH_3 + I_2 \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} \stackrel{\circ}{\dagger} R-CH-I + H$$
$$2P + 3I_2 \longrightarrow 2PI_3$$

(8) From alkanones (By Clemmensen's method) : Carbonyl compound may also be reduced with Zinc amalgam and concentrated HCl (Zn-Hg/HCl), this reaction is called Clemmensen reduction.

 $R-CO-R' + 4H \xrightarrow[conc.HCl]{Zn-Hg} R-CH_2-R' + H_2O$

(9) From alkanals and alkanones (By Wolf Kishner reaction) :

 $>C=O \xrightarrow{(1)NH_2NH_2} > CH_2$

(10) From G.R. :

(a) Formation of alkanes with same number of C atoms : Grignard reagent reacts with the compounds having active hydrogen to form alkane.

 $\begin{array}{cccc} R - Mg - X + H - O + H & \longrightarrow R - H + Mg (OH) X \\ & + R - O + H & \longrightarrow R - H + Mg (OR) X \\ & + R - NH + H & \longrightarrow R - H + Mg (NHR) X \end{array}$

This reaction is used to determine the number of active H-atoms in the compound this is known as Zerewitnoff's method.

- (b) G.R. react with alkyl halide to give higher alkanes : $RMgX + R' \longrightarrow R R + MgX_2$
- (11) **Corey-House Synthesis :** This method is suitable for the preparation of unsymmetrical alkanes i.e. those of type R–R'

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

GOLDEN KEY POINTS

 $\begin{array}{ccc} R\text{-}X & \xrightarrow{(i)Li} & \\ & \xrightarrow{(ii)CuX} & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) R \text{-}R' + RCu + LiX$

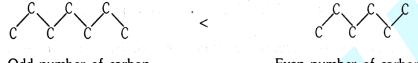
Website : www.edubull.com

Note: In Corey-house reaction symmetrical and unsymmetrical alkane both can be formed.

(12)	From metal carbide (By hydrolysis) : Only CH ₄ can be obtained by the hydrolysis of Be or Al carbides Al ₄ C ₃ + 12H ₂ O $\xrightarrow{\Delta}$ Al(OH) + 3CH ₄ Be ₂ C + 4H ₂ O $\xrightarrow{\Delta}$ 2Be(OH) ₂ + CH ₄		
	BEGINNI	ER'S BOX-1	
1.		 (2) 2, 3-Dimethyl butane (4) Neopentane 	
2.	If isopropyl chloride and ethyl chloride b alkanes are obtained. (1) n-Butane (3) 2, 3-Dimethyl butane	ooth react with Na in presence of dry ether which (2) 2-Methyl butane (4) All of them	
3.	Which of the following compound cann reaction. (1) ethane (2) butane	ot be obtained from single alkyl halide by wurtz(3) isobutane(4) hexane	
4.	How manyacids can be taken to obtain isot (1) 4 (2) 3	outane by decarboxylation ? (3) 2 (4) 5	
5.		-COOH (III) CH=C-COOH (2) III > II > I (4) None is correct	
6.	Which of the following does not give alkan (1) Ph–OH (2) C ₆ H ₆	the with R–Mg–X. (3) CH_3COOH (4) HCl	
7.	Which of the following reaction can not be used to obtained propane in good yield.(1) Wurtz reaction(2) Corey-house reaction(3) Decarboxylation of acid salt(4) All of them		
	 .1.3 Physical & Chemical Properties of alkane Physical properties (i) Solubility : Alkanes being non polar and thus insoluble in water but soluble in nonpolar solvents Ex. C₆H₆, CCl₄ ,ether etc. (ii) Boiling point :- ∞ molecular weight (for n-alkanes) (b) [Vander waals force of attraction µ molecular weight µ surface area of molecule] 		

Mob no. : +91-9350679141

i.e. boiling point Pentane < hexane < heptanes


Also boiling point $\propto \frac{1}{\text{number of side chain}}$

because the shape approaches to spherical which results in decrease in van der Waal's forces (as surface area decreases)

Thus boiling point n-Pentane > Isopentane > neopentane

(iii) Melting Point : M.P. of alkanes do not show regular trend. Alkanes with even number of carbon atoms have higher M.p. than their adjacents alkanes of odd number of carbon atoms.

The abnormal trend in M.P. is due to the fact that alkanes with odd carbon atoms have their end carbon atom on the same side of the molecule and in even carbon atom alkane the end Carbon atom on opposite side. Thus alkanes with eyen carbon atoms are packed closely in crystal lattice to permit greater intermolecular attractions.

Odd number of carbon

Even number of carbon

Chemical Properties

(1) **Oxidation :**

(a) Complete oxidation or combustion : Alkanes burn readily with non-luminous flame in presence of air or oxygen to give CO_2 and water with evolution of heat. Therefore, alkanes are used as fuels.

$$C_nH_{2n+2} + \left(\frac{3n+1}{2}\right)O_2 \ ^{3}\!\!/ \mathbb{R} \ nCO_2 + (n+1)\ H_2O + Q;$$
 ($\Delta H = -ve$)

(b) Incomplete oxidation : In limited supply of air alkane gives carbon black and CO.

 $2CH_4 + 3O_2 \longrightarrow 2CO + 4H_2O$ $CH_4 + O_2 \longrightarrow C + 2H_2O$ C-black (used in printing ink)

(c) Catalytic oxidation :

(i) Alkanes are easily converted to alcohols and aldehydes under controlled catalytic oxidation.

$$2CH_4 + O_2 \xrightarrow{\text{RedhotCuorFetube}} 2CH_3OH$$

$$CH_4 + O_2 \xrightarrow{\text{Mo}_2O_3} HCHO + H_2O$$

(ii) Alkanes on oxidation in presence of maganese acetate give fatty acids. •

$$CH_{3}(CH_{2})_{n}CH_{3} \xrightarrow{(CH_{3}COO)_{2}Mn} CH_{3}(CH_{2})_{n}COOH$$

(iii) Tertiary alkanes are oxidized to give tertiary alcohols by KMnO₄.

CH_3	CH_3
	$\xrightarrow{[0]} CH_3 \xrightarrow{\downarrow} OH$
$CH_3 - \dot{C} - H$	KMnO ₄ CH ₃ -C-OH
ĊH₃	ĊH ₃

(2) Substitution Reactions : Substitution reaction in alkanes. shows free radical mechanism.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(3) Isomerization: Unbranched chain alkanes on heating with AlCl₃ + HCl / 200°C are converted into branched chain alkanes

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{-A|C|_{3} + HC|} CH_{3} - CH_{3} - CH_{3}$$
n-butane
Isobutane
Isobutane

Branched chain alkanes converted to more branched alkane.

$$\begin{array}{c} CH_{3} \\ I \\ CH_{3}-CH-CH_{2}-CH_{2}-CH_{3} \end{array} \xrightarrow{AICI_{3}+HCI} CH_{3}-CH_$$

Isomerisation of alkanes is of great importance in petroleum industry to increase the octane number of petrol (gasoline).

(4) Pyrolysis or Cracking or thermal decomposition: When alkanes are heated to 500-700°C they are decomposed in to lower hydrocarbon. This decomposition is called pyrolysis.

Ex.
$$CH_4 \xrightarrow{1000^{\circ}C} C + H_2$$

 $CH_3 - CH_3 \xrightarrow{500^{\circ}C} CH_2 = CH_2 + H_2$
 $CH_3CH_2CH_3 \xrightarrow{CH_2} CH_2 = CH_2 + CH_4$
 $CH_3CH_2CH_3 \xrightarrow{Cracking} 1$ -Butene + 2-Butene + Ethene + Propene + $CH_4 + H_2$

(5) Aromatization:

Unbranched higher alkanes (from 6 to 10 carbon atoms) when heated in presence of oxides of Cr, Mo, V on Al₂O₃ support at 500°C aromatic hydrocarbons are formed.

n-hexane
$$\xrightarrow{Cr_2O_3/Al_2O_3}$$
 \bigcirc + $4H_2$
 $CH_3(CH_2)_5$ - $CH_3 \xrightarrow{Cr_2O_3/Al_2O_3}$ \bigcirc + $4H_2$
n-heptane Toluene

5.1.4 PETROLEUM

Flash Point : Flash point of an oil is that minimum temperature at which the oil gives so much vapour that it starts burning in the presence of air when it comes in contact with a spark. Flash point depends on local temperature of countries.

Flash point of kerosene in India \Rightarrow 44°C, in France \Rightarrow 35°C, in England \Rightarrow 23°C

Knocking : Preignition of the fuel-air mixture in the cylinder ahead of the flame causes knocking. Knocking reduces efficiency of the engine and also damages the cylinder and piston of the engine.

Octane Number (Quality of Gasoline): Octane number is a scale which is used to determine the quality of a fuel in an internal engine. Two pure hydrocarbons are selected as standard. (i) n- heptane- straight chain hydrocarbon knocks very badly have octane number zero

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(ii) Iso-octane- branched hydrocarbon, good antiknocking properties, have octane number 100.

Octane no. of a fuel : The percentage ef iso-octane by volume in a mixture of iso-octane and n-heptane which has the same antiknocking properties as the fuel under examination. For example- Let knocking of a fuel is same as a mixture of 70% iso-octane and 30% n- eptane, then its octane no. is 70.

Order of quality of Gasoline or petrol : (i) Length of chain \uparrow , the octane number \downarrow (ii) branches \uparrow octane number \uparrow

Straight chain alkane < branched chain alkane < olefins < cycloalkane < aromatic compound Octane number can be increased by : (i) Cracking (ii) Isomerization (iii) Aromatization Antiknocking agents- (Gasoline additives): Quality of a fuel is increased by:

(i) By using fuel of higher octane number

(ii) By addition of certain compounds to the gasoline which reduce knocking. These are called antiknocking agents.

Ex. Tetraethyllead (TEL) $-Pb (C_2H_5)_4$

Tetra methyl lead –Pb(CH₃)₄

In cylinder of engine $Pb(C_2H_5)_4$ decomposes in ethyl radicals which combine with the radicals produced due to irregular combustion and this prevents knocking.

 $Pb(C_2H_5)_4 \xrightarrow{heat} Pb + 4CH_3CH$

but combustion of TEL with petrol gives Litharge (PbO) which deposited in cylinder walls and piston has jammed. So Ethylene dibromide is added with petrol.

 $Br-CH_2-CH_2-Br \longrightarrow CH_2=CH_2 + Br_2$ Pb + Br_2 \longrightarrow PbBr_2 ^ (Volatile)

		BEGINN	VER'S BOX-2	
1.	Which of the followi	ng reactions of alkan	es involve free radical in	ntermediates
	(1) Halogenation		(2) Pyrolysis	
	(3) Nitration		(4) All of the above	
2.	(CH ₃) ₃ CMgCl on rea	ction with D ₂ O prod	uces	
	(1) $(CH_3)_3CD$		$(2) (CH_3)_3 OD$	
	(3) (CD3)3CD		$(4) (CD_3)_3OD$	
3.	The compound with	the highest boiling po	oint is	
	(1) n-hexane		(2) n-pentane	
	(3) 2,2-dimethyl prop	ane	(4) propane	
4.	Photochemical chlori	nation of alkane is in	nitiated by a process of	
	(1) pyrolysis	(2) substitution	(3) Homolysis	(4) Peroxidation
			-	
5.	Isomerization in alka	ne may be brought a	bout by using.	
	(1) Al_2O_3	(2) Fe_2O_3	(3) AlCl ₃ and HCl	(4) Concentrated H_2SO_4
6.	Bromination of an all	kane as compared to	chlorination proceeds	
	(1) At a slower rate			
	(2) At a faster rate			

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

(3) With equal rates

(4) With equal or different rate depends upon the temperature

5.2 ALKENES (OLEFINS)

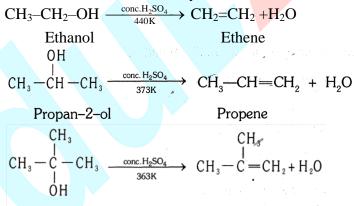
5.2.1 Introduction of Alkenes

Alkene are also called olefins (oil forming) since the first member ethylene (C_2H_4) was found to form an only liquid on reaction with chlorine.

 $CH_2=CH_2+Cl_2\longrightarrow Cl-CH_2-CH_2-Cl$

5.2.2 General Methods of Preparation

(1) From Alcohols : Alkenes can be prepared from monohydric alcohols or alkanols by the loss of H_2O and the reaction is known as dehydration reaction.



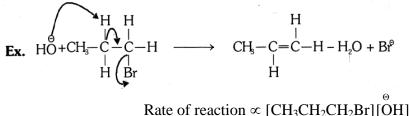
Alcohol

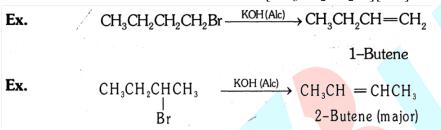
The dehydration can be carried with Al_2O_3 or with **mineral acid** upon heating.

(a) **Dehydration with Al₂O₃ :** Ethene is prepared by heating ethanol with Al₂O₃ at 620 K. $CH_2-CH_2-OH \xrightarrow{Al_2O_3} CH_2=CH_2+H_2O$

(b) **Dehydration with mineral acid :** Alcohols upon heating with cone. H_2SO_4 form alkenes and the reaction is called acidic dehydration.

2-Methylpropan-2-ol 2-Methylpropene


From the above reactions, it is clear that the order of acidic dehydration in different alcohols is [Tertiary > Secondary > Primary]


(2) **From Alkyl halide (By dehydrohalogenation):** Removal of HX from a substrate by alcoholic KOH or NaNH₂

$$\begin{array}{c} \text{RCH}_{2}\text{CH}_{2}\text{X} \xrightarrow{\text{KOH}(Alc.)\Delta} \text{RCH}=\text{CH}_{2} \\ \text{Ex.} \begin{array}{c} \text{CH}_{3}-\text{CH}_{2}-\text{CH}-\text{CH}_{3} \xrightarrow{-\text{HX}} \text{CH}_{3}\text{CH}=\text{CH}_{-\text{CH}_{3}} + \text{CH}_{3}\text{CH}=\text{CH}_{2} \\ \downarrow \\ X \end{array} \xrightarrow{\text{(Saytzeff product)}} \text{(Hoffmann's product)} \end{array}$$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

The ease of dehydrohalogenation show the order For alkyl group [tertiary > secondary > primary] For halogen in halide [Iodide > Bromide > Chloride > fluoride] It is single step and synchronous process. Removal of proton, the formation of multiple bond between C α and C β and the release of the leaving group X take place simultaneously. (E₂ mechanism)

(3) From Alkyl dihalide (By dehalogenation of Vicinal or Gem dihalide) : Removal of X₂ from a substrate by Zn dust or Zn–Cu in alcoholic Solution.
 (a) From Vicinal dihalide : same number carbon alkene is obtained

$$H \xrightarrow[H]{I} \stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} H \xrightarrow{Z_{n}} CH_{2} = CH_{2} + ZnX_{2}$$

v v

(b) From gem dihalide : Higer alkene obtained

$$CH_3CHX_2 + 2Zn + X_2$$
 $CHCH_3 \longrightarrow CH_3 - CH = CH - CH_3 + ZnX_2$

(4) By the controlled hydrogenation of alkynes :

Alkynes can be converted into alkenes as a result of **controlled reduction** in two ways: (a) **By the use of Lindlar's catalyst :** Lindlar's catalyst is a mixture of palladium catalyst deposited over barium sulphate or calcium carbonate. The catalytic mixture is slightly poisoned by quinoline or sulphur and allows the reduction or hydrogenation of alkyne with hydrogen only upto the alkene stage. The major product is cis-Alkene.

Ex.
$$CH_3 - C \equiv C - CH_3 + H_2$$
 $\xrightarrow{\text{Lindlar's catalyst}}_{Pd/CaCO_3}$ $CH_3 \\ H > C = C < H_3 \\ H \\ C = C < H_3 \\ C = C < H_3 \\ H \\ C = C < H_3 \\ C = C < H_3 \\ H \\ C = C < H_3 \\ C$

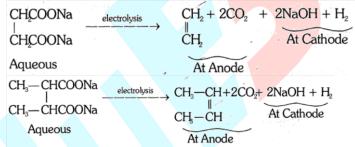
In place of Lindlar's catalyst Nickel-boride (Ni-B also called P-2 catalyst) can also be used.

(b) By the action of sodium in liquid ammonia : This is known as Birch reduction and the major product is a **trans alkene** i.e., the two hydrogen atoms get attached on the opposite side of the double bond. For example,

Power by: VISIONet Info Solution Pvt. Ltd		
Tower by: Vibroiter into Solution I vi. Eta		
Website : www.edubull.com	Mob no. : +91-9350679141	
website : www.euubun.com	100 10. 171 7330077141	

5. By Pyrolysis of ester :

$$CH_{3} - C \xrightarrow{\bullet} O - CH_{2} \xrightarrow{\bullet} CH - R \xrightarrow{400-500^{\circ}C} CH_{3}COOH + CH_{2} = CHR$$


Hoffmann's Rule : Less substituted or less stable alkene is major product.

Ex.

In the reaction to form an alkene α β -hydrogen from alkyl ester is attracted by oxygen atom of keto group.

(6) By Pyrolysis of tetra alkyl ammonium hydroxide :

(7) **By Kolbe's method:** Electrolysis of potassium or sodium salt of saturated dicarboxylic acid gives alkene.

5.2.3 PHYSICAL & CHEMICAL PROPERTIES OF ALKENES Physical Properties

(1) All are colourless and have no charactenistic odour. Ethene has pleasant smell.

(2) Lower members (C_2 to C_4) gaseous medhnrii(C_5 to C_{17}) liquid and .higher members are solid.

(3) The B.P., M.P. and specific gravity show a regular increase with increase in molecular weight

(4) The increase in branching in carbon chain decreases the B.P. among isomeric alkenes.

(5) The B.P. and M.P. of alkenes are slightly higher than the corresponding alkanes because the intermolecular forces of attraction are stronger due to the presence of easily polarizable π bond.

(6) Insoluble in water because they cannot form H-bond with water molecule, they dissolve freely in organic solvent like benzene, CHC_{13} , CC_{14} etc.

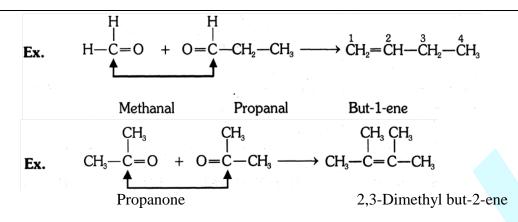
Chemical Properties : Alkenes are more reactive than alkane this is because -

- (a) The π electrons of double bond are located much far from the carbon nuclei and are thus less firmly bound to them.
- (b) π bond is weaker than σ bond and more easily broken.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

	The reactivity order for alkenes –	-			
	$CH_2=CH_2 > R-CH=CH_2 > R_2C=CH_2 \approx RCH=CHR > R_2C=CHR > R_2C=CR_2$				
		(Trans < Cis)			
	The reactivity order of alkenes h	as been delt in terms of heat of	hydrogenation of alkene, more		
	is the heat of hydrogenation ($\Delta H = -ve$), more is the reactivity, the reactivity of alker				
	however also related to				
	(i) Steric hinderance	(ii) Hyperconjugation			
	Alkenes give the following type	of reactions :			
	(A) Addition reaction.	(B) Oxidation reaction	(C) Substitution reaction.		
	(D) Polymerization Reaction.	(E) Isomerisation			
(A)	Addition Reaction :				
. ,	[A1] Free Radical Addition				
	(1) Addition of H_2 :				
	$R-CH=CH_2+H_2$	$^{d} \rightarrow R-CH_{2}-CH_{3} + Heat of Hydrogenerative Hydrogenera$	drogenation.		
	(a) Reaction is exothermic, Heat released in reaction is called heat of hydrogenation.				
	(b) Stability of alkene ∞	$\frac{1}{\text{heat of hydrogenation}} \propto \frac{1}{\text{react}}$	ivity of alkene with H_2		
	· · · ·) obtain vegetable (saturated fa	ts) ghee from hydrogenation of		
	oil.				
	[A ₂] Electrophlic Additi	on Reactions:			
(D)	Oridation Depations Allyance	a sociler and discal has and discing	aganta Oridiaina aganta attack		
(B)	Oxidation Reaction: Alkenes are easily oxidised by oxidising agents. Oxidising agents attack on double bond and product formed during oxidation depends on oxidising agents.				
	(1) Combustion:				
	$C_nH_{2n} + \frac{3n}{2}O_2 \longrightarrow nCO_2 + nH_2$	20			
	-				
	One mole of alkene requires $\frac{3n}{2}$	moles of O_2 for complete comb	oustion.		
	(2) Ozonolysis : (A test for unsat	turation in molecule)			
	(i) The addition of ozone on the double bonds and subsequent a reductive hydrolysis of the				
	ozonide formed is termed as ozon				
	(ii) Ozonides are explosive comp				

(iii) On warming with Zn and H_2O , ozonides cleave. at the site of the double bond, the products are carbonyl compound (aldehyde or ketone) depending on the nature of the alkene.


Ex. $CH_3 \xrightarrow{-C} = CH \xrightarrow{-CH_3} \xrightarrow{Ozonolysis} CH_3 \xrightarrow{-C} = O + CH_3CHO$ $CH_3 \xrightarrow{I} CH_3$

(iv) Ozonolysis of alkenes helps in locating the position of double bond in an alkene. It can be achieved by joining together the carbon atoms of the two carbonyl compounds formed as the products of ozonolysis with double bond.

Ex.
$$CH_3 - \overset{H}{C} = 0 + 0 = \overset{H}{C} - CH_3 \longrightarrow \overset{1}{C}H_3 - \overset{2}{C}H = \overset{3}{C}H - \overset{4}{C}H_3$$

Ethanal But-2-ene

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

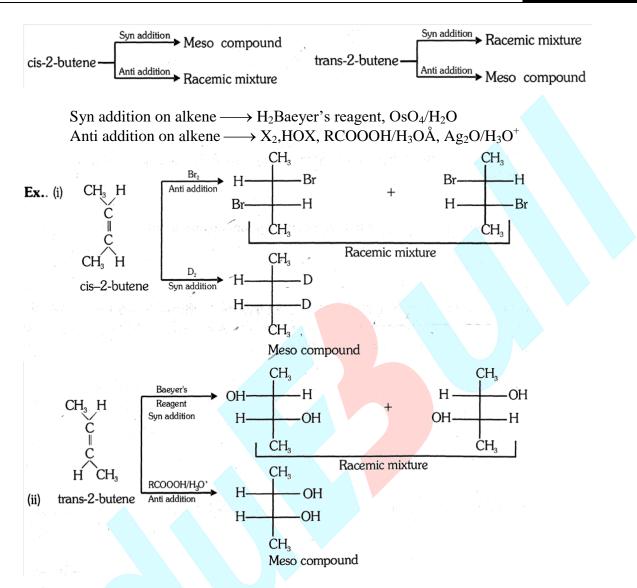
It may be noted that reaction with bromine water or Baeyer's reagent detects the presence of double bond (or unsaturation) in an alkene while ozonolysis helps in locating the position of the double bond.

(3) Hydroxylation : Oxidation of carbon-carbon double bondt to $-\overset{-}{C}-\overset{-}{C}-\overset{-}{C}$ is known as OH OH

hydroxylation.

(a) Oxidation by Baeyer's reagent (A test for unsaturation) : Alkenes on passing through dilute alkaline 1% cold KMnO₄ (i.e., Baeyer's reagent) decolourise the pink colour of KMnO₄ and gives brown ppt of MnO₂. The reaction involves syn addition.

(Anti-addition)(glycol)


(d) By Ag_2O/Δ :

(a) Alkenes reacts with oxygen in the presence of Ag catalyst at 250°-400°C to form epoxide.

$$CH_{2} = CH_{2} + Ag_{2}O \xrightarrow{\Lambda} CH_{2} - CH_{2} \xrightarrow{H_{2}O/H^{\oplus}} CH_{2} - CH_{2} \text{ (anti addition)}$$

$$CH_{2} = CH_{2} + Ag_{2}O \xrightarrow{\Lambda} CH_{2} - CH_{2} \xrightarrow{H_{2}O/H^{\oplus}} CH_{2} - CH_{2} \text{ (anti addition)}$$

$$OH \xrightarrow{OH} OH$$

$$CH_{2} = CH_{2} + C_{6}H_{5}COOOH \xrightarrow{R-CH} CH_{2} > O + C_{6}H_{5}COOH$$

Epoxide

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

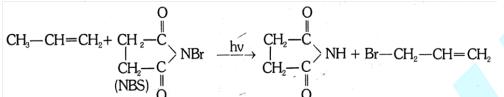
(4) Oxidation by strong oxidising agent (Oxidative cleavage): The alkenes themselves are readily oxidised to acid or ketone by means of acid permagnate. If HCOOH is formed, it further oxidized to CO_2 and H_2O Keep it in mind that no further oxidation of ketones will takes place.

$$CH_{2}=CH_{2} + 4[O] \longrightarrow 2HCOOH \xrightarrow{2[O]} 2CO_{2} + H_{2}O$$

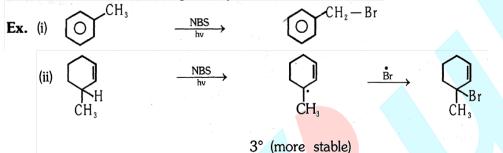
$$CH_{3}CH=CH_{2} \xrightarrow{5[O]} CH_{3}COOH + CO_{2} + H_{2}O$$

$$CH_{3} \xrightarrow{C} = CH_{2} \xrightarrow{4[O]} CH_{3} \xrightarrow{CH_{3}} C = O + CO_{2} + H_{2}O$$

(C) Substitution Reaction (AllyJic Substitution):


When alkenes are treated with low concentration of Cl_2 or Br_2 at high temperature or with NBS/hv one of their allylic hydrogen is replaced by halogen atom. Allylic position is the carbon adjacent to one of the unsaturated carbon atoms. It is free radical substitution.

 $CH_3-CH=CH_2+Cl_2 \xrightarrow{500^{\circ}C} ClCH_2-CH=CH_2+HCl$


Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Allyl chloride (3-Chloro-1-propene)

N-Bromosuccinimide (NBS) is and important reagent used for allylic bromination and benzylic substitution.

Substitution reaction is not given by ethane.

(D) Polymerization :

(i) Two or more than two molecules of same compound unit with each other to form a long chain molecule with same empirical formula. This long chain molecule having repeating structural units called polymer, and the starting simple molecule as monomer and process is called addition polymerization.

(ii) Molecular weight of polymer is simple multiple of monomer.

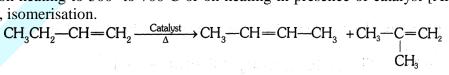
(iii) Polymerization can be carried out by free radical or ionic mechanism.

(iv) The presence of oxygen initiates, free radical mechanism.

(v) Addition polymerization can also be carried out by ionic mechanism by using Ziegler-Natta Catalysts. (R₃Al+TiCl₄)

Ex. $nCH_2=CH_2 \longrightarrow (-CH_2-CH_2-)n$

ethene Poly ethene

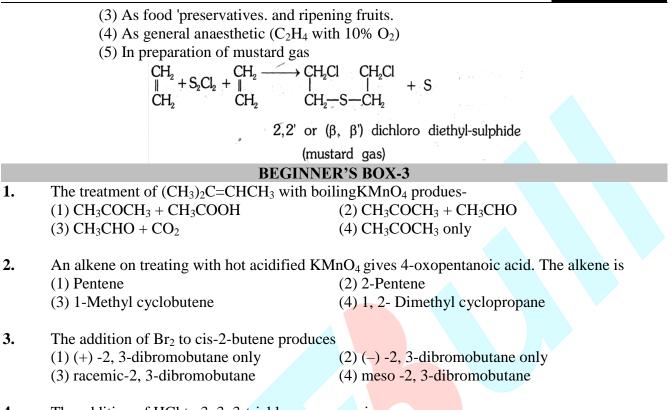

used in the manufacture of insulating Coating, sheeting and moulded, products.

$$nCH_{3}-CH=CH_{2} \xrightarrow{R_{3}AI+TICI_{4}} (-CH-CH_{2}-)_{n}$$

Polypropene or Koylene (Plastic)

(E) Isomerisation :

Alkene on heating to 500° to 700°C or on heating in presence of catalyst $[AlCl_3 \text{ or } Al_2(SO_4)_3]$ undergo, isomerisation.


1-Butene

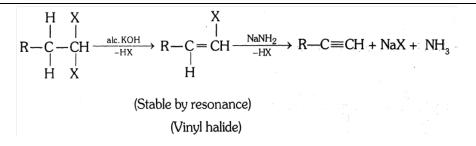
2-Butene

Isobutylene

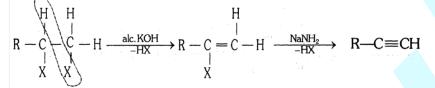
Uses: (1) In plastic formation. (2) In oxy ethylene welding

Power by: VISIONet Info Solution Pvt. Ltd		
Website : www.edubull.com	Mob no. : +91-9350679141	

- 4. The addition of HCl to 3, 3, 3-trichloropropene gives (1) $Cl_3CCH_2CH_2Cl$ (2) $Cl_3CCH(Cl)CH_3$ (3) $Cl_2CH,CH(Cl)CH_2Cl$ (4) $Cl_2CHCH2CHCl_2$
- 5. When ethene reacts with bromine in aqueous sodium chloride solution. The product(s) obtained is (are)
 - (1) Ethylene dibromide only ..
 - (2) Ethylene dibromide and 1-bromo-2-chloro ethane
 - (3) 1-bromo-2-chloroethane only
 - (4) Ethylene dichloride only


5.3 ALKYNES

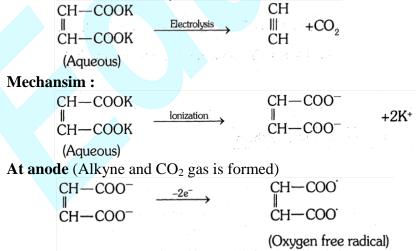
5.3.1 Introduction of Alkynes


Alkynes are unsaturated hydrocarbons and characterised by the presence of a triple bond between the two carbon atoms (C=C). The carbon-carbon triple bond is also called acetylenic bond. It consists of a strong σ and two weak π bonds. Alkynes are isomers of alkadienes and cycloalkenes.

5.3.2 General Methods of Preparation

(1) From Gem dihalides (by dehydrohalogenation) : Dehydrohalogenation agents are : NaNH₂ (Sodamide) or Alc. KOH or ROH + RONa.

(2) From Vicinal dihalides (by dehydrohalogenation):

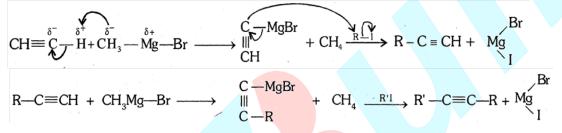


(a) Elimination of Vic. Dihalides gives also alkadiene (1, 2 and 1,3 alkadienes) bu the major product is alkyne.

(3) Dehalogenation of terahalo alkane : By heating 1, 1, 2, 2-tetra halo alkane with Zn dust.

$$\begin{array}{ccc} X & X \\ R & -C & -C & -H & \xrightarrow{2Zn} & R & -C \equiv CH + 2ZnX_2 \\ X & X & X \end{array}$$

(4) From Kolbe's electrolysis : By the electrolysis of aqueous solution of sodium or potassium fumarate or maleate, acetylene is formed at anode.



Power by: VISIONet Info Solution Pvt. Ltd
Website : www.edubull.com

Mob no. : +91-9350679141

0

(5) **Preparation of higher alkynes by Grinard reagent :** By this method lower alkyne is converted in to higher alkyne

(6) Preparation of Ethyne or Acetylene:

(a) From Metal carbide [Laboratory method) : Acetylene is prepared in the laboratory by the action of water on calcium carbide.

$$CaC_{2} + 2H_{2}O \longrightarrow CH \equiv CH + Ca(OH)_{2}$$
$$[Ca^{+2} + \overset{\Theta}{C} \equiv \overset{\Theta}{C} + 2H^{+} + 2OH^{-} \longrightarrow CH \equiv CH + Ca(OH)_{2}$$

(b) From haloform [CHI₃, CHCl₃) : Pure acetylene is obtained when iodoform or chloroform is heated with Silver powder

 $CHI_3 + 6Ag + I_3CH \xrightarrow{\Delta} CH \equiv CH + 6AgI$

5.3.3 Physical & Chemical Properties of Alkynes Physical Properties

(i) First three members $[C_2 \text{ to } C_4]$ are gases, from C_5 to Cl_2 are liquid and after that they are solid.

(ii) Alkynes are slightly soluble in H₂O but soluble in CCl₄, benzene, acetone and alcohol.

(iii) B.P., M.P. and densities of alkynes are comparatively more than alkenes and alkanes due to more polarisation.

B.P. \propto mol.wt. $\propto \frac{1}{\text{number of side chains}}$

Chemical Properties

The chemical properties of alkynes are due to two factors

(a) Presence of π electrons : Due to presence of loosely bonded π electrons, alkynes like alkenes, undergo easily electrophilic addition reaction.

Carbon-carbon triple bond is less reactive than the carbon-carbon double bond towards electrophilic addition reactions.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

In addition to electrophilic additions, alkynes also undergo nucleophilic addition with nucleophiles

(b) **Presence of acidic hydrogen atom :** The hydrogen atom attached to the triple bonded carbon can be removed by a strong base and hence acetylene and 1-alkynes are considered as weak acids.

Explanation : The amounts of s-character in various types of C-H bonds is as-

Since s electrons are closer to the nucleus than the p electrons, the electrons present in a bond having mores-character will be closer to nucleus. Due to high s-character of the C–H bond in alkyne (s = 50%) the electrons constituting this bond are more strongly held by the carbon nucleus, with the result the H present on \equiv C–H can be easily removed as proton.

GOLDEN KEY POINTS

- The acidic nature of the three types of -C-H bonds as $\equiv C-H > = C-H > -C-H$ sp $sp^2 sp^3$
- Relative acidic order $H_2O > ROH > HC = CH > HNH_2 > CH_2 = CH_2 > CH_3 CH_3$

(1) Addition reaction

(a) Addition of hydrogen : Alkynes reacts '-rth hydrogen in presence of a catalyst. In presence of Pt., Pd or Ni alkynes give alkanes with H_2

$$R-C \equiv CH \xrightarrow{Ni,H_2} R-CH = CH_2 \xrightarrow{Ni,H_2} R-CH_2 - CH_3$$

In presence of Lindlar's catalyst $[Pd/CaCO_3 + quinoline or Nickle boride]$ alkynes give cisalkene

 $R - C \equiv C - R' \xrightarrow{\text{Lindlar's catalyst}}_{H_2} \xrightarrow{R}_{H} > C = C < \stackrel{R'}{H}$ (Stereo specific reaction)

cis - alkene

In Presence of Na/NH₃ alkynes gibve trans-alkene. (Brich Reduction)

$$R - C \equiv C - R' \xrightarrow{Na/Liq.NH_3} R + C = C < H R'$$
 (Stereo specific reaction)

trans-alkene

(b) Electrophilic addition: Addition reactions where the addition is initiated by electrophile (positive group). The characteristic reaction of alkynes is electrophilic addition but the reactivity of alkynes towards electrophilic addition is less than alkenes because in C=C, the π electrons are tightly held by carbon nuclei and so they are less easily available for reaction with electrophiles.

Another reasons is : The intermediates when an electrophile attack on alkene and alkynes are :

(i)
$$R - C \equiv C - R \xrightarrow{H^+} R - \stackrel{I}{C} = \stackrel{+}{C} - R$$

(ii) $R - CH = CH - R \xrightarrow{H^+} R - CH - \stackrel{+}{C} H - R$

ц

Stability of intermediates :

 $\begin{array}{l} \overset{\oplus}{R-CH=C-R} < \\ (+)ve \text{ on more EN} \\ atoms is less stable \end{array}$

R-CH₂-CH -R more stable

 \oplus

So we can say that alkenes are more reactive towards electrophilicaddition reaction. (i) Addition of Halogens : Alkynes react with Cl_2 or Br_2 in dark in presence of metal halide and form

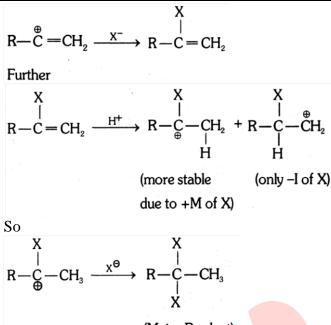
$$R - C \equiv CH \qquad \xrightarrow{2Cl_2} \qquad R - C - C - H$$

Mechanism :

(ii) Addition of halogen acids (H–X) : Addition according to Markovnikov's Rule. Reactivity order of H–X : HI > HBr > HCl > HF

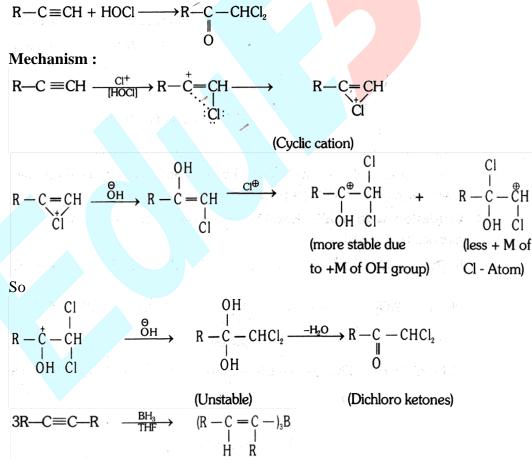
$$R - C \equiv C - H \xrightarrow{H-X} R - C - C - H$$

(Gem dihalides major product)

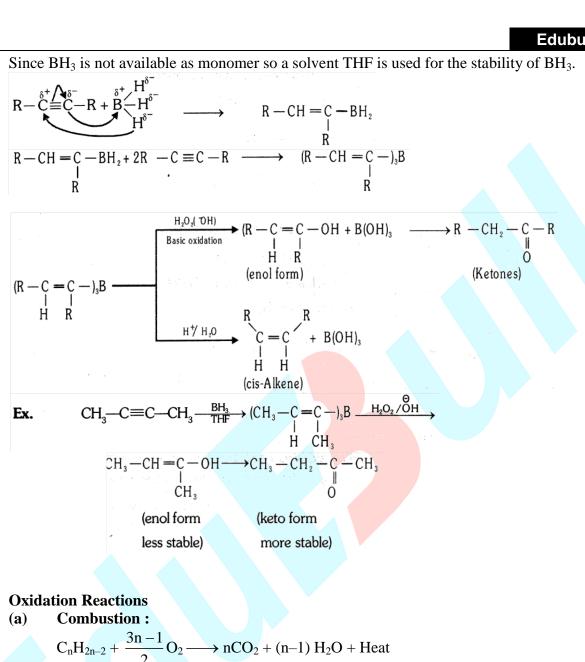

Mechanism :

$$R - C \stackrel{\frown}{=} CH \qquad \xrightarrow{H^+}{[H-X]} \qquad R - \stackrel{+}{C} = C - H$$

(Intermediate is carbocation)


Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141


(Major Product)

(iii) Addition of HOX : Alkynes react with hypohalous acids according to Markovnikov's rule and form gem diol, which are unstable, lose a molecule of water and form dihalo aldehyde or dihalo ketones.

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

 $2\text{HC} = \text{CH} + 5\text{O}_2 \longrightarrow 4\text{CO}_2 + 2\text{H}_2\text{O} + 312 \text{ K.cal}$ The combustion of acetylene is used for welding and cutting of metals in which oxyacetylene flame having high temp (3000°C) is produced.

(b) Oxidation with acidic KMnO₄ : In presence of acidic KMnO₄, alkynes are oxidised to monocarboxylic acids.

(2)

 $\begin{array}{c} \mathbf{R} \longrightarrow \mathbf{C} = \mathbf{C} \longrightarrow \mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}' \xrightarrow{H_2 O + [O]} \mathbf{R} \\ \parallel & \parallel \\ 0 & 0 \end{array} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \begin{array}{c} H_2 O + [O] \longrightarrow \mathbf{R} \\ \end{array} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \begin{array}{c} H_2 O + [O] \longrightarrow \mathbf{R} \\ \end{array} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \begin{array}{c} H_2 O + [O] \longrightarrow \mathbf{R} \\ \end{array} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R} - \mathbf{R} - \mathbf{C} - \mathbf{R} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R}'} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R} - \mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R} \xrightarrow{\mathbf{R} - \mathbf{C} - \mathbf{R} - \mathbf{R}$ СН CHO $H_2O+[O] \rightarrow 2HCOOH \longrightarrow CO_2$ 2[O] + CHO CH glyoxal

Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141 Website : www.edubull.com

$$CH_{3} - C \equiv CH + 2[O] \longrightarrow CH_{3} - C = 0 \xrightarrow{H_{2}O + [O]} CH_{3}COOH + HCOOH \xrightarrow{[O]} CO_{2}$$

(c) Oxidation with ozone (O_3) : In the ozonoluysis both sp-C-atoms are converted into--C-C- group.

Ozonide (Addition of ozone) (Acids) In this reaction H_2O_2 is oxidant which oxidize R - C - C - R into acids.

But if wer use come amount of Zn as reductant with H_2O then it reduce H_2O_2 so oxidation does not take place

0

$$H_{2}O_{2} + Zn \longrightarrow ZnO + H_{2}O$$

$$(i) O_{3} \longrightarrow CH_{3} - C - C - H + H_{2}O_{2} \longrightarrow CH_{3} - C - OH + HCOOH$$

$$CH_{3} - C \equiv CH \xrightarrow{(i) O_{3}} CH_{3} - C - C - H + H_{2}O_{2} \longrightarrow CH_{3} - C - OH + HCOOH$$

$$(i) O_{3} \longrightarrow CH_{3} - C - C - H + ZnO$$

$$(i) H_{2}O/Zn \longrightarrow CH_{3} - C - C - H + ZnO$$

(3) Substitution Reaction : (Formation of metallic derivatives)

Only 1-alkynes give substitution reaction and show acidic characters $\equiv \overset{\delta-}{C} - \overset{+\delta}{H}$ Acetylene is dibasic acid where as propyne is monobasic means acetylene can give two H+ where as propyne can give one H⁺.

(a) Formation of sodium acetylides : Acetylene and 1-alkynes react with sodamide to form acetylides

(b) Formation of copper and silver acetylldes : Copper and silver acetylides are obtained by passing 1-alkynes in the ammonical Solution. of cuprous chloride and silver nitrate (Tollen's reagent) respectively.

Ex.

These reactions are used for detecting the presence of acetylenic hydrogen. These are test to distinguish alkenes and alkynes or 1-alkynes and 2-alkynes.

(4) **Isomerisation:** When alkyne-1 is heated with ale. KOH alkyne-2 is obtained.

 $\begin{array}{cccc} CH_{3} & -CH_{2} & -C \equiv CH & \xrightarrow{alc.KOH} & CH_{3} & -C \equiv C & -CH_{3} \\ \hline 1 & -Butyne & 2 & -Butyne \\ When alkyne -2 is heated with NaNH2 alkyne -1 is obtained \\ CH_{3} & -C \equiv C & -CH_{3} & \xrightarrow{NaNH_{2}} & CH_{3} & -CH_{2} & -C \equiv CH \\ \hline 2 & -Butyne & 1 & -Butyne \end{array}$

(5) **Polymerisation:**

(a) Linear polymerisation :

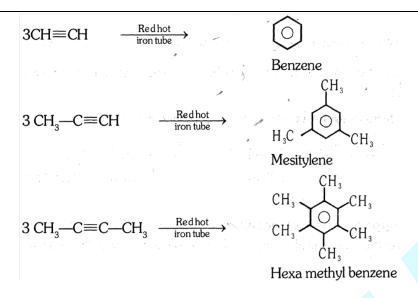
Dimerisation : When two molecules of acetylene passed through a Solution. of Cu_2Cl_2 and NH_4Cl a vinyl acetylene is obtained.

$$2HC \equiv C - H \xrightarrow{Cu_2Cl_2} CH_2 = CH - C \equiv C - H$$

mono vinyl acetylene (butenyne)

When vinyl acetylene react with HCI then chloroprene is obtained.

 $CH_2 = CH - C \equiv C - H \xrightarrow{HCl} CH_2 = CH - C = CH_2 \xrightarrow{Polymerisation} Neoprene (Synthetic rubber)$


2- chloro-1,3-butadiene

[chloroprene]

Trimerisation : 3 molecules of acetylene. $3CH \equiv CH \xrightarrow{Cu_2Cl_2} CH_2 = CH - C \equiv C - CH = CH_2$

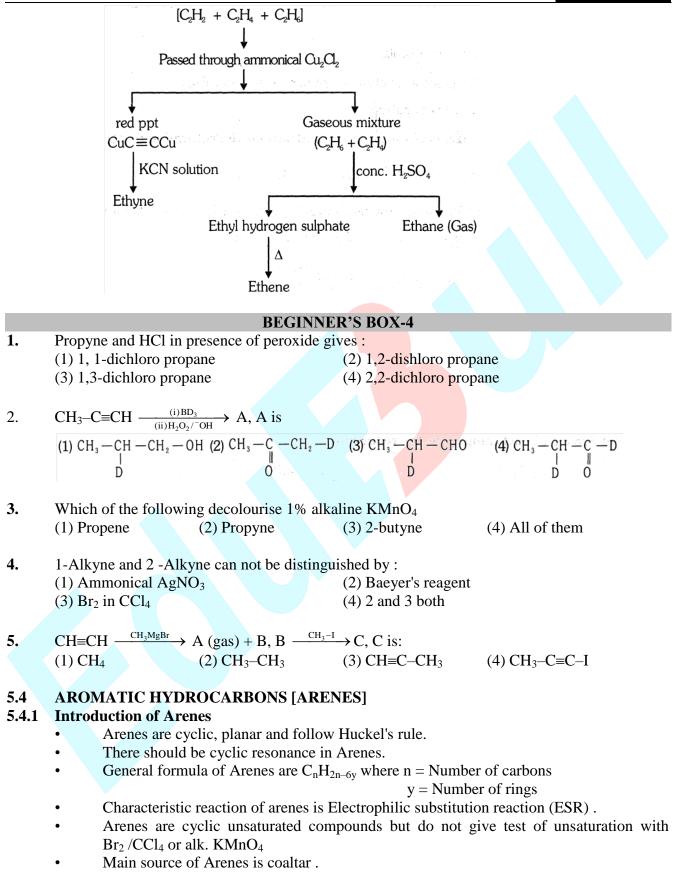
Divinyl acetylene

(b) **Cyclic polymerisation:** When-alkyne is passed through red hot metallic tube, cyclic polymerization takes place with the formation of aromatic compound

Uses of Acetylene

- (i) Oxyacetylene flame used in welding and cutting
- (ii) Acetylene is used as an illuminant
- (iii) Acetylene is used for artificial ripening of fruits
- (iv) Used for manufacture of acetaldehyde, acetic acid, ethyl alcohol, westron, westrosol, PVC,
- PVA, Chloroprene, butadiene, Lewisite etc.
- (v) It is used as a general anaesthetic.

Test for alkynes :


(i) Decolourization of Br_2 in CCl₄ Solution.

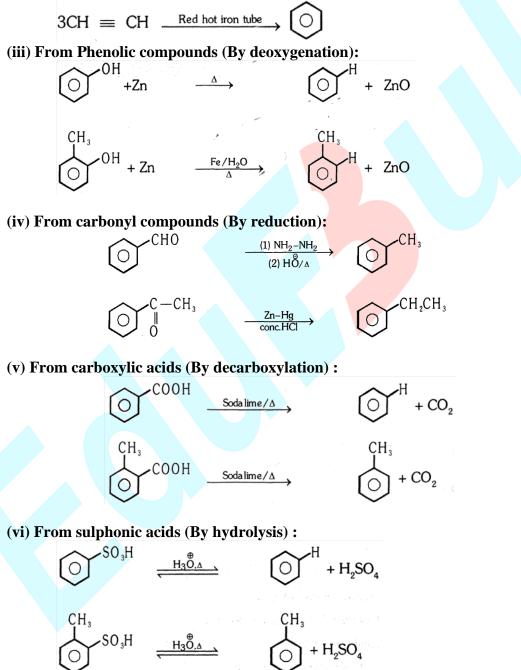
(ii) Decolourisation of 1% alkaline KMnO₄ Solution.

(iii) 1- alkynes give white ppt. with ammonical $AgNO_3$ and red ppt with ammonical cuprous chloride Solution.

Note: (i) and (ii) tests are used for determination of unsaturation (i.e, presence of double ortriple bond in any compound). (iii) Test is used for distinguish between alkenes and 1-alkynes or 1-alkyne and 2-alkyne.

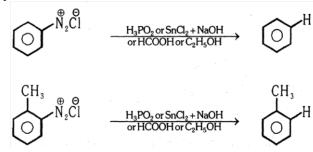
Separation of ethane, ethene and ethyne :

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

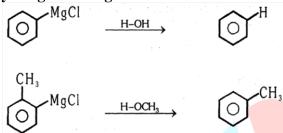

They have higher percentage of carbon so burn with smoky flame.

5.4.2 General Methods of Preparation

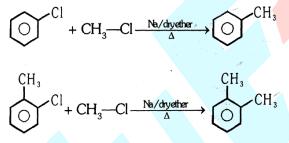
•

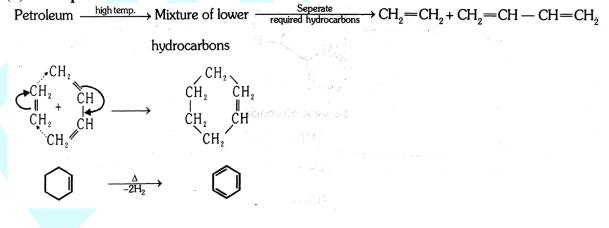

(i) From alkanes (By cyclisation or Aromatisation) Hydroforming or catalytic reforming N-Hexane $\xrightarrow{C_{L_2O_3}/AL_2O_3}_{600^\circ C}$ Benzene + 4H₂

(ii) From alkyne (By cyclic polymerisation) When acetylene is passed through red hot metallic tube cyclic polymerisation takes place and benzene is formed



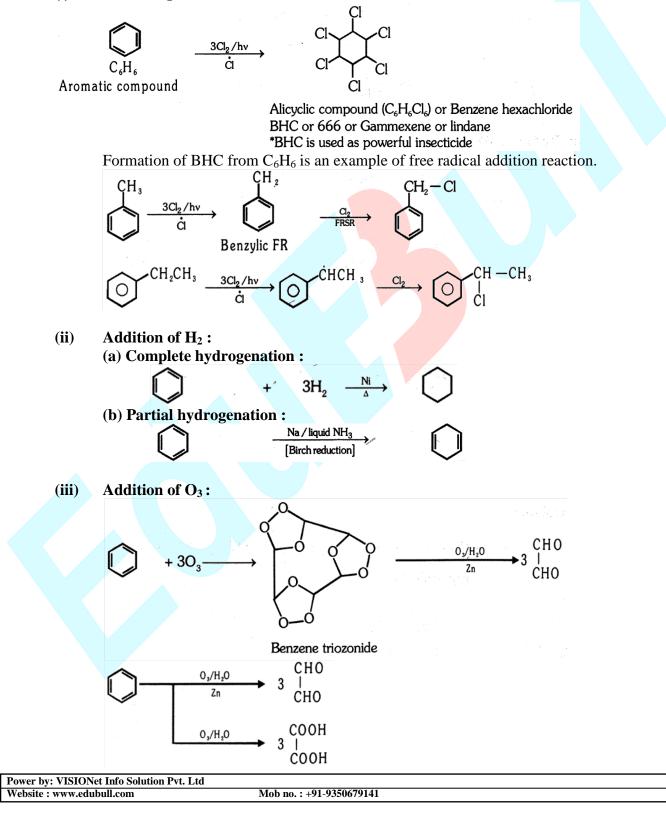
Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com


(vii) By diazonium salts :


(viii) By Grignard reagent :

(ix) By Wurtz fittig reaction :

(x) From petroleum :


5.4.3 Physical & Chemical Properties of Arenes Physical properties :

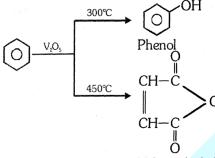
- (i) Benzene is colourless liquid [B.P. is 80°Cl
- (ii) Benzene is insoluble in H₂O and density less than H₂O
- (iii) Benzene is used as a solvent and it is soluble in organic solvents.
- (iv) It is highly inflammable and burns with smoky flame.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Chemical properties : Benzene show following types of reaction -(A) Addition reactions (B) Electrophilic substitution reactions (C) Oxidation reactions

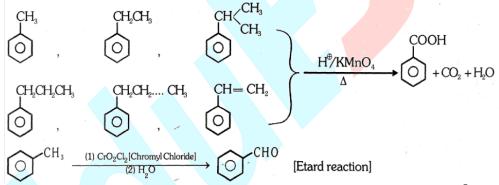
(A) Addition reaction :(i) Addition of X₂

$$\begin{array}{c} & \begin{array}{c} & CH_{3} \\ & & \begin{array}{c} & O_{3}/H_{2}O \\ \hline & & Zn \end{array} \end{array} \xrightarrow{\begin{array}{c} & CH_{3} - C - CHO \\ & \parallel \\ & O \end{array}} \xrightarrow{\begin{array}{c} & CHO \\ & + 2 \end{array} \xrightarrow{\begin{array}{c} & I \\ & CHO \end{array}}$$


Addition of 3 mole Cl_2 or 3 mole H_2 or 3 mole O_3 on benzene show presence of 3 double bonds in benzene. Benzene does not give addition reaction with Br/CCl_4 or alkaline KMnO₄

(C) Oxidation reactions:

(i) **Combustion** :


 $C_6H_6 \xrightarrow{15}{2}O_2 \longrightarrow 6CO_2 + 3H_2O$

(ii) Catalytice Oxidation :

(iii) Side chain Oxidation : Atleast one benzylic –H containing alkyl benzene gives benzoic acid in presence of strong oxidising agent.

Note : t-butyl benzene does not give benzoic acid in presence of $H^{\oplus}/KMnO_4$, since t-butyl benezene does not contain benzylic -H

ANSWER KEY

				BEGINN	ER'S BO	X-1			
1.	(2)	2.	(4)	3.	(3)	4.	(3)	5.	(2)
6.	(2)	7.	(1)						

	BEGINNER'S BOX-2
Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(1) BEGINNER'S BOX-3 (1) 2. (3) 3. (3) 4. (1) 5. (2) BEGINNER'S BOX-4									Edu	bull
(1) 2. (3) 3. (3) 4. (1) 5. (2) BEGINNER'S BOX-4		(4) (1)	2.	(1)	3.	(1)	4.	(3)	5.	(3)
(1) 2. (3) 3. (3) 4. (1) 5. (2) BEGINNER'S BOX-4					BEGINN	ER'S BOX	-3			
	•	(1)	2.	(3)			4.	(1)	5.	(2)
					BEGINN	ER'S BOX	-4			
	•	(4)	2.	(3)				(4)	5.	(3)

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141