Complex Number

1. The Real Number System

Natural Number (N): The number which are used for counting are known as Natural Number (also known as set of Positive Integers) i.e.

$$N = \{1, 2, 3, \dots \}$$

Whole Number (W): If '0' is included in the set of natural numbers then we get the set of Whole Numbers i.e.W = $\{0, 1, 2, \dots\}$

$$= \{N\} + \{0\}$$

Integers (**Z** or **I**): If negative natural number is included in the set of whole number then we get set of Integers i.e.

Z or
$$I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Rational Numbers (Q): The numbers which are in the form of p/q (Where p, q \in I, q \neq 0) are called as Rational Number e.g. $\sqrt{2}$, $\frac{2}{3}$, 3, $\frac{1}{3}$, 0.76, 1.2322 etc.

Irrational Numbers : The numbers which are not rational i.e. which can not be expressed in p/q form or whose decimal part is non terminating non repeating but which may represent magnitude of physical quantities. e.g., $5^{1/3}$, π , e,....etc.

Real Numbers (R): The set of Rational and Irrational Number is called as set of Real Numbers i.e. $N \subset W \subset Z \subset Q \subset R$

Note:

- (i) Number zero is neither positive nor negative but is an even number.
- (ii) Square of a real number is always positive.
- (iii) Between two real numbers there lie infinite real numbers.
- (iv) The real number system is totally ordered, for any two numbers $a, b \in R$, we must say, either a < b or b < a or b = a.

- (v) All real number can be represented by points on a straight line. This line is called as number line.
- (vi) An Integer (Note) is said to be even, if it is divided by 2 other wise it is odd number.
- (vii) The magnitude of a physical quantity may be expressed as a real number times, a standard unit.
- (viii) Number '0' is an additive quantity
- (ix) Number '1' is multiplicative quantity.
- (x) Infinity (∞) is the concept of the number greater than greatest you can imagine. It is not a number, it is just a concept, so we do not associate equality with it.
- (xi) Division by zero is meaning less.
- (xii) A non zero integer p is called prime if $p \neq \pm 1$ and its only divisors are ± 1 and $\pm p$.

1.1 Modulus of a Real Number:

The Modulus of a real number x is defined as follows

$$|x| = x$$
 when $x > 0$

0 when
$$x = 0$$

$$-x$$
 when $x < 0$

e.g.
$$|3| = 3$$
 $|-6| = -(-6) = 6$

Now
$$|x-a| = \begin{cases} x-a & \text{when } x \ge a \\ -(x-a) & \text{when } x < a \end{cases}$$

1.2 Intervals : Let a, x, b are real number so that

$$x \in [a, b] \implies a \le x \le b$$

[a,b] is known as the closed interval a, b

$$x \in (a, b) \implies a < x < b$$

(a, b) is known as the open interval a, b

$$x \in (a, b] \implies a < x \le b$$

(a, b] is known as semi open, semi closed Interval

$$x \in [a, b) \implies a \le x < b$$

[a, b) is known as semi closed, semi open Interval

2. Imaginary Number

Square root of a negative real number is an imaginary number, while solving equation $x^2+1=0$ we get $x=\pm\sqrt{-1}$ which is imaginary. So the quantity $\sqrt{-1}$ is denoted by 'i' called 'iota' thus $i=\sqrt{-1}$

Further $\sqrt{-2}$, $\sqrt{-3}$, $\sqrt{-4}$ may be expressed as $\pm i\sqrt{2}$, $\pm i\sqrt{3}$, $\pm 2i$

2.1 Integral powers of iota

As we have seen
$$i = \sqrt{-1}$$
 so $i^2 = -1$
 $i^3 = -i$ and $i^4 = 1$

Hence $n \in N$, $i^n = i, -1, -i, 1$ attains four values according to the value of n, so

$$i^{4n+1} = i$$
, $i^{4n+2} = -1$
 $i^{4n+3} = -i$, i^{4n} or $i^{4n+4} = 1$

In other words $i^n = (-1)^{n/2}$ if n is even integer

$$i^n = (-1)^{\frac{n-1}{2}}i$$
 if n is odd integer.

Note :-

(i)
$$i^2 = i \times i = \sqrt{-1} \times \sqrt{-1} \neq \sqrt{1}$$

(ii) $\sqrt{a.b} = \sqrt{a} \cdot \sqrt{b}$ possible iff both a, b are non-negative. (incorrect). It is also true for one positive and one negative no.

e.g.
$$\sqrt{(-2)(3)} = \sqrt{-2} \cdot \sqrt{3}$$

only invalid when both are negative means $\sqrt{a.b} \neq \sqrt{a} \cdot \sqrt{b}$ iff a & b both are negative.

(iii) ' i ' is neither positive, zero nor negative, Due to this reason order relations are not defined for imaginary numbers.

3. Complex Number

A number of the form z = x + iy where $x, y \in R$ and $i = \sqrt{-1}$ is called a complex number where x is called as real part and y is called imaginary part of complex number and they are expressed as

Re
$$(z) = x$$
, Im $(z) = y$

Here if x = 0 the complex number is purely Imaginary and if y = 0 the complex number is purely Real.

A complex number may also be defined as an ordered pair of real numbers any may be denoted by the symbol (a, b). If we write z = (a, b) then a is called the real part and b the imaginary part of the complex number z.

Note:

- (i) Inequalities in complex number are not defined because 'i' is neither positive, zero nor negative so 4 + 3i < 1 + 2i or i < 0
 - or i > 0 is meaning less.
- (ii) If two complex numbers are equal, then their real and imaginary parts are separately equal. Thus if a + ib = c + id

$$\Rightarrow$$
 a = c and b = d

so if
$$z = 0 \Rightarrow x + iy = 0 \Rightarrow x = 0$$
 and $y = 0$

The student must note that

$$x, y \in R$$
 and $x, y \neq 0$. Then if

$$x + y = 0 \implies x = y$$
 is correct

but
$$x + i y = 0 \implies x = -iy$$
 is incorrect

Hence a real number cannot be equal to the imaginary number, unless both are zero.

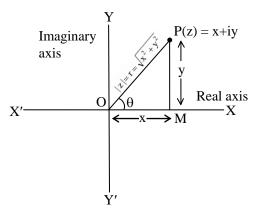
(iii) The complex number 0 is purely real and purely imaginary both.

3.1 Representation of a Complex Number :

(a) Cartesian Representation:

The complex number z = x + iy = (x, y) is represented by a point P whose coordinates are

refered to rectangular axis xox´ and yoy´, which are called real and imaginary axes respectively. Thus a complex number z is represented by a point in a plane, and corresponding to every point in this plane there exists a complex number such a plane is called Argand plane or Argand diagram or complex plane or gussian plane.



Note:

- (i) Distance of any complex number from the origin is called the modulus of complex number and is denoted by |z|. Thus, $|z| = \sqrt{x^2 + y^2}$.
- (ii) Angle of any complex number with positive direction of x-axis is called amplitude or argument of z. Thus, amp (z) = arg (z) = θ = $tan^{-1}\frac{y}{x}$.
- (b) Polar Representation: If z = x + iy is a complex number then $z = r(\cos \theta + i \sin \theta)$ is a polar form of complex number z where $x = r \cos \theta$, $y = r \sin \theta$ and $r = \sqrt{x^2 + y^2} = |z|$.
- (c) Exponential Form: If z = x + iy is a complex number then its exponential form is $z = r e^{i\theta}$ where r is modulas and θ is amplitude of complex number.
- (d) Vector Representation: If z = x + iy is a complex number such that it represent point P(x, y) then its vector representation is $z = \overrightarrow{OP}$

3.2 Algebraic operations with Complex Number:

Addition (a + ib) + (c + id) = (a + c) + i(b + d)

Subtraction (a + ib)-(c + id) = (a - c) + i(b - d)

Multiplication (a + ib) (c + id) = ac + iad + ibc + i^2bd = (ac - bd) + i(ad + bc)

Division
$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)}$$

(when at least one of c and d is non zero)

$$=\frac{(ac+bd)}{c^2+d^2}+i\frac{(bc-ad)}{c^2+d^2}$$

3.2.1 Properties of Algebraic operations with Complex Number

Let z, z_1 , z_2 and z_3 are any complex number then their algebraic operation satisfy following properties-

Commutativity: $z_1 + z_2 = z_2 + z_1 \& z_1 z_2 = z_2 z_1$

Associativity : $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$

and
$$(z_1 z_2) z_3 = z_1(z_2 z_3)$$

Identity element : If O = (0, 0) and I = (1, 0) then z + 0 = 0 + z = z and $z \cdot 1 = 1$. z = z. Thus 0 and 1 are the identity elements for addition and multiplication respectively.

Inverse element : Additive inverse of z is -z and multiplicative inverse of z is $\frac{1}{z}$.

Cancellation Law:

$$z_1 + z_2 = z_1 + z_3 z_2 + z_1 = z_3 + z_1$$
 \Rightarrow $z_2 = z_3$

and
$$z_1 \neq 0$$

$$z_1 z_2 = z_1 z_3$$

$$z_2 z_1 = z_3 z_1$$
 $\Rightarrow z_2 = z_3$

Distributivity : $z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3$

and
$$(z_2 + z_3) z_1 = z_2 z_1 + z_3 z_1$$

3.3 Conjugate Complex Number:

The complex numbers z = (a, b) = a + ib and $\overline{z} = (a, -b) = a - ib$ where $b \neq 0$ are said to be complex conjugate of each other (Here the complex conjugate is obtained by just changing the sign of i) e.g.conjugate of z = -3 + 4i is $\overline{z} = -3 - 4i$.

Note: Image of any complex number in x-axis is called its conjugate.

3.3.1 Properties of Conjugate Complex Number

Let z = a + ib and $\overline{z} = a - ib$ then

(i)
$$\overline{(\overline{z})} = z$$

(ii)
$$z + \overline{z} = 2a = 2 \text{ Re } (z) = \text{purely real}$$

(iii)
$$z - \overline{z} = 2ib = 2i \text{ Im } (z) = \text{purely imaginary}$$

(iv)
$$z \overline{z} = a^2 + b^2 = |z|^2$$

(v)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

(vi)
$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

(vii)
$$\overline{re^{i\theta}} = re^{-i\theta}$$

(viii)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}$$

$$(ix)$$
 $\overline{z}^n = (\overline{z})^n$

$$(x) \quad \overline{z_1 z_2} = \overline{z_1} \quad \overline{z_2}$$

(xi)
$$z + \overline{z} = 0$$
 or $z = -\overline{z}$

 \Rightarrow z = 0 or z is purely imaginary

(xii)
$$z = \overline{z} \implies z$$
 is purely real

4. Modulus of a Complex Number

If z = x + iy then modulus of z is equal to $\sqrt{x^2 + y^2}$ and it is denoted by |z|. Thus

$$z = x + iy \implies |z| = \sqrt{x^2 + y^2}$$

Note:

Modulus of every complex number is a non negative real number.

4.1 Properties of modulus of a Complex Number

(i)
$$|z| \ge 0$$

(ii)
$$-|z| \le \text{Re}(z) \le |z|$$

(iii)
$$-|z| \le \text{Im}(z) \le |z|$$

(iv)
$$|z| = |\overline{z}| = |-z| = |-\overline{z}|$$

$$(v) \quad z \ \overline{z} = |z|^2$$

(vi)
$$|z_1 z_2| = |z_1| |z_2|$$

(vii)
$$\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|} (z_2 \neq 0)$$

$$(viii) |z|^n = |z^n|, n \in N$$

(ix)
$$|z| = 1 \Leftrightarrow \overline{z} = \frac{1}{z}$$

$$(x) \quad z^{-1} = \frac{\overline{z}}{\mid z \mid^2}$$

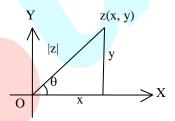
(xi)
$$|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm 2\text{Re}(z_1 \overline{z}_2)$$

(xii)
$$|z_1+z_2|^2 + |z_1-z_2|^2 = 2[|z_1|^2 + |z_2|^2]$$

(xiii)
$$|re^{i\theta}| = r$$

5. Amplitude or Argument of a Complex Number

The amplitude or argument of a complex number z is the inclination of the directed line segment representing z, with real axis.



If z = x + iy then

$$amp(z) = tan^{-1} \left(\frac{y}{x}\right)$$

For finding the argument of any complex number first check that the complex number is in which quadrant and then find the angle θ and amplitude using the adjacent figure.

Note:

- (i) Principle value of any complex number lies between $-\pi < \theta \le \pi$.
- (ii) Amplitude of a complex number is a many valued function. If θ is the argument of a

complex number then $(2n\pi+\theta)$ is also argument of complex number.

- (iii) Argument of zero is not defined.
- (iv) If a complex number is multiplied by iota (i) its amplitude will be increased by $\pi/2$ and will be decreased by $\pi/2$, if is multiplied by -i.
- (v) Amplitude of complex number in I and II quadrant is always positive and in III and IV is always negative.

5.1 Properties of argument of a Complex Number

- (i) amp (any real positive number) = 0
- (ii) amp (any real negative number) = π
- (iii) amp $(z \overline{z}) = \pm \pi/2$
- (iv) amp $(z_1 \cdot z_2) = amp(z_1) + amp(z_2)$

(v) amp
$$\left(\frac{z_1}{z_2}\right)$$
 = amp (z_1) – amp (z_2)

- (vi) amp $(\overline{z}) = -$ amp (z) = amp (1/z)
- (vii) amp $(-z) = amp(z) \pm \pi$
- (viii) amp $(z^n) = n$ amp (z)
- (ix) amp (iy) = $\pi/2$ if y > 0 = $-\pi/2$, if y < 0
- (x) amp (z) + amp (\overline{z}) = 0

6. Square root of a Complex Number

The square root of z = a + ib is -

$$\sqrt{a+ib} \ = \pm \left[\sqrt{\frac{\mid z\mid +a}{2}} + i \sqrt{\frac{\mid z\mid -a}{2}} \right] \ for \ b>0$$

and
$$\pm \left[\sqrt{\frac{|z|+a}{2}} - i\sqrt{\frac{|z|-a}{2}} \right]$$
 for $b < 0$

Note:

- (i) The square root of i is $\pm \left(\frac{1+i}{\sqrt{2}}\right)$ (Here b=1)
- (ii) The square root of -i is $\pm \left(\frac{1-i}{\sqrt{2}}\right)$ (Here b=-1)
- (iii) The square root of ω is $\pm \omega^2$
- (iv) The square root of $\omega^2\, is \pm \omega$

7. Triangle Inequalities

- (i) $|z_1 \pm z_2| \le |z_1| + |z_2|$
- (ii) $|z_1 \pm z_2| \ge |z_1| |z_2|$

8. Miscellaneous Results

(i) If ABC is an equilateral triangle having vertices z_1 , z_2 , z_3 then $z_1^2 + z_2^2 + z_3^2$

$$= z_1 z_2 + z_2 z_3 + z_3 z_1$$

$$1 1 1$$

or
$$\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} = 0.$$

- (ii) If z_1 , z_2 , z_3 , z_4 are vertices of parallelogram then $z_1 + z_3 = z_2 + z_4$.
- (iii) Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be two complex numbers represented by points P and Q respectively in Argand Plane then -

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$= |(x_2 - x_1) + i(y_2 - y_1)| = |z_2 - z_1|$$

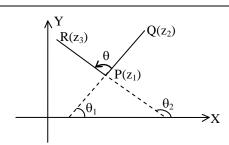
- (iv) If a point P divides AB in the ratio of m: n, then $z = \frac{mz_2 + nz_1}{m+n}$ where z_1 , z_2 and z represents the point A, B and P respectively.
- (v) $|z z_1| = |z z_2|$ represents a perpendicular bisector of the line segment joining the points z_1 and z_2 .
- (vi) Let P be any point on a circle whose centre C and radius r, let the affixes of P and C be z and z_0 then $|z z_0| = r$.
- (a) Again if $|z z_0| < r$ represent interior of the circle of radius r.
- (b) $|z z_0| > r$ represent exterior of the circle of radius r.
- (vii) Let z_1 , z_2 , z_3 be the affixes of P, Q, R respectively in the Argand Plane. Then from the figure the angle between PQ and PR is.

$$\theta = \theta_2 - \theta_1$$

$$= \arg \overrightarrow{PR} - \arg \overrightarrow{PQ}$$

$$= \arg \left(\frac{z_3 - z_1}{z_2 - z_1}\right)$$

Edubull



- (a) If z_1 , z_2 , z_3 are collinear, thus $\theta=0$ therefore $\frac{z_3 - z_1}{z_2 - z_1} \text{ is purely real.}$
- (b) If z_1 , z_2 , z_3 are such that $PR \perp PQ$,

$$\theta = \pi \, / \, 2 \; \text{So} \; \frac{z_3 - z_1}{z_2 - z_1} \; \text{is purely imaginary}.$$

Mob no.: +91-9350679141