2.1. INTRODUCTION

We have read about functions, one-one onto (bijective) functions and inverse of a function. We have also learnt that inverse of a function f is denoted by f⁻¹ and f⁻¹ exists if and only if f is a one-one onto function. There are several functions which are not one-one onto and hence their inverse does not exist. We have also read about trigonometric functions are not one-one onto over their natural domains and ranges and hence their, inverse do not exist. But if we restrict their domains and ranges, then they will become one-one onto functions and their inverse will exist. In this chapter we will study inverses of trigomometric functions and their various properties.

2.2. INVERSE OF A FUNCTION

Let $f : A \to B$ If (be a function from A to B) which is one-one onto. Then a function $f^{-1} : B \to A$ (f^{-1} from B to A) is said to be the inverse of the function f if

$$y = f(x) \Leftrightarrow f^{-1}(y) = x$$

i.e., image of x under f is $y \Leftrightarrow$ image of y under f⁻¹ is x. Clearly domain f⁻¹ = range f and range f⁻¹ = domain f

2.3. PRINCIPAL BRANCHES OF INVERSE TRIGONOMETRIC FUNCTIONS

(i) Definition of sin⁻¹ x (Principal branch of sin⁻¹ x) :

 $\sin^{-1}: [-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ i.e., \sin^{-1} is a function from [-1, 1] to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\sin^{-1} x = \theta \iff x = \sin \theta$

 $-1 \le x \le 1$ and $-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$

Such that

where

(ii) Definition of $\cos^{-1} x$ (Principal branch of $\cos^{-1} x$): $\cos^{-1} : [-1, 1] \rightarrow [0, \pi]$ is such that $\cos^{-1} x = \theta \Leftrightarrow x = \cos \theta$, where $-1 \le x \le 1$ and $0 \le \theta \le \pi$

(iii) Definition of tan⁻¹ x (Principal branch of tan⁻¹ x) :

$$\tan^{-1}: (-\infty, \infty) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ such that}$$
$$\tan^{-1} \mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = \tan \mathbf{0}$$

where
$$-\infty < x < \infty$$
 and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

(iv) Definition of
$$\cot^{-1} x : \cot^{-1} : (-\infty, \infty) \to (0, \pi)$$
 such that
 $\cot^{-1} x = \theta \Leftrightarrow x = \cot \theta$, where $-\infty < x < \infty$ and $0 < \theta < \pi$.

(v) Definition of sec⁻¹ x : sec⁻¹ : $(-\infty, -1] \cup [1, \infty) \rightarrow [0, \pi] - \left\{\frac{\pi}{2}\right\}$ such that

$$\sec^{-1} x = \theta \Leftrightarrow x = \sec \theta$$

where, $-\infty < x \le -1 \text{ or } 1 \le x < \infty \text{ and } 0 \le \theta < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < \theta \le \pi$

(vi) Definition of cosec⁻¹ x :

$$\operatorname{cosec}^{-1}$$
: $(-\infty, -1] \cup [1, \infty) \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$

such that $cosec^{-1} x = \theta \Leftrightarrow x = cosec \theta$

where
$$-\infty < x \le -1$$
 or $1 \le x < \infty$ and $-\frac{\pi}{2} \le \theta < 0$ or $0 < \theta \le \frac{\pi}{2}$

Note : Unless otherwise stated sin⁻¹ x, cos⁻¹ x, tan⁻¹ x, cot⁻¹, x sec⁻¹ x and cosec⁻¹ x will mean their principal branches.

2.4 GRAPHS OF PRINCIPAL BRANCHES OF INVERSE TRIGONOMETRIC FUNCTIONS

(i) Graph of y = sin x Domain = R = $(-\infty, \infty)$ and Range = [-1, 1]

Page # 26

Graph of y = cosec⁻¹ x Domain = $(-\infty, -1] \cup [1, \infty)$ $\pi/2$ Range = $\left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right] = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ 2.5. SOME IMPORTANT PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS Property I : (i) $\sin(\sin^{-1} x) = x$ for all $x \in [-1, 1]$ (ii) $\cos(\cos^{-1} x) = x$, for r all $x \in [-1, 1]$ tan (tan⁻¹ x) = x, for all $x \in R$ (iii) (iv) $\cot(\cot^{-1} x) = x$, for all $x \in R$. sec (sec⁻¹ x) = x, for all $x \in (-\infty, -1] \cup [1, \infty)$ i.e., for all $x \leq -1$ or $x \geq 1$ (v) cosec (cosec⁻¹ x) = x, for all $x \in (-\infty, -1] \cup [1, \infty)$ i.e., for all $x \leq -1$ or $x \geq 1$ (vi) Property II : $\sin^{-1}(\sin x) = x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (i) (ii) $\cos^{-1}(\cos x) = x, x \in [0, \pi]$ $\tan^{-1}(\tan x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (iii) (iv) $\cot^{-1}(\cot x) = x, x \in (0, \pi)$ sec⁻¹ (sec x) = x, x $\in \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$ i.e., x $\in (0, \pi) - \left\{\frac{\pi}{2}\right\}$ (v) $\operatorname{cosec}^{-1}(\operatorname{cosec} x) = x, x \in \left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right] \text{ i.e., } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ (vi) $-\pi - x$ if $-\frac{3\pi}{2} \le x \le \sin^{-1}(\sin x) = \begin{cases} x, & \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x & \text{if } \frac{\pi}{2} \le x \le \frac{3\pi}{2} \\ x - 2\pi & \text{if } \frac{3\pi}{2} \le x \le \frac{5\pi}{2} \\ 3\pi - x, & \text{if } \frac{5\pi}{2} \le x \le \frac{7\pi}{2} \\ \end{cases} \text{ and so on }$ $-\pi \leq x \leq 0$ $0 \leq x \leq \pi$ Х, $\cos^{-1}(\cos x) = \begin{cases} 2\pi - x, \end{cases}$ $\pi \leq x \leq 2\pi$ x – 2π, $2\pi \leq x \leq 3\pi$ $3\pi \le x \le 4\pi$ and so on $4\pi - x$

$$\tan^{-1}(\tan x) = \begin{cases} x + \pi, & -\frac{3\pi}{2} < x < -\frac{\pi}{2} \\ x, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ x - \pi, & \frac{\pi}{2} < x < \frac{3\pi}{2} \\ x - 2\pi, & \frac{3\pi}{2} < x < \frac{5\pi}{2} \end{cases} \text{ and so on}$$

Property III :

(i)
$$\sin^{-1} x = \csc^{-1} \frac{1}{x}, -1 \le x \le 1 \text{ and } x \ne 0$$

 $\csc^{-1} x = \sin^{-1} \frac{1}{x}, x \le -1 \text{ or } x \ge 1$

(ii)
$$\cos^{-1}x = \sec^{-1}\frac{1}{x}, -1 \le x \le 1$$

 $\sec^{-1}x = \cos^{-1}\frac{1}{x}, x \le -1 \text{ or } x \ge 1$

(iii)
$$\tan^{-1}x = \cot^{-1}\left(\frac{1}{x}\right), x > 0 = -\pi + \cot^{-1}\left(\frac{1}{x}\right), x < 0$$

(iv)
$$\cot^{-1} x = \tan^{-1} \left(\frac{1}{x} \right), x > 0 = \pi + \tan^{-1} \left(\frac{1}{x} \right), x < 0$$

Property IV :

- $\sin^{-1}(-x) = -\sin^{-1}(x),$ for all $x \in [-1, 1]$ (i)
- $\cos^{-1}(-x) = \pi \cos^{-1} x$, (ii) for all $x \in [-1, 1]$
- $\tan^{-1}(-x) = -\tan^{-1}x$, for all $x \in R$ (iii)
- $\cot^{-1}(-x) = \pi \cot^{-1}x$, for all $x \in R$ (iv)
- (v) $\sec^{-1}(-x) = \pi - \sec^{-1}x$, for all $x \in (-\infty, -1] \cup [1, \infty)$ i.e., for all $|x| \ge 1$ for all $x \in (-\infty, -1] \cup [1, \infty]$ i.e., for all $|x| \ge 1$
- $cosec^{-1}(-x) = -cosec^{-1}x$, (vi)

Property V .:

(i)
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
, for all $x \in [-1, 1]$

(ii)
$$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$
, for all $x \in \mathbb{R}$

(iii)
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$
 for all $x \in (-\infty, -1] \cup [1, \infty)$ i.e., for all $|x| \ge 1$

Property VI :

(i)
$$\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1} \left(\frac{x+y}{1-xy} \right), & \text{if } xy < 1 \\ \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right), & \text{if } x > 0, y > 0 \text{ and } xy > 1 \\ -\pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right), & \text{if } x < 0, y < 0 \text{ and } xy > 1 \end{cases}$$

0

Property VII :

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$
, if $xy > -1$

This result can be established by putting -y in place of y in the results of property V using the fact that $\tan^{-1}(-y) = -\tan^{-1} y$.

$$\tan^{-1} x - \tan^{-1} y = \begin{cases} \tan^{-1} \left(\frac{x - y}{1 + xy} \right), & \text{if } xy > -1 \\ \pi + \tan^{-1} \left(\frac{x - y}{1 + xy} \right), & \text{if } x > 0, y < 0 \text{ and } xy < -1 \\ -\pi + \tan^{-1} \left(\frac{x - y}{1 + xy} \right), & \text{if } x < 0, y > 0 \text{ and } xy < -1 \end{cases}$$

Property VIII :

$$\sin^{-1} x + \sin^{-1} y = \begin{cases} \sin^{-1} \{x\sqrt{1-y^2} + y\sqrt{1-x^2}\}, & \text{if } -1 \le x, y \le 1 \text{ and } x^2 + y^2 \le 1 \\ \pi - \sin^{-1} \{x\sqrt{1-y^2} + y\sqrt{1-x^2}\}, & \text{if } 0 < x, y \le 1 \text{ and } x^2 + y^2 > 1 \end{cases}$$
$$= \pi - \sin^{-1} \{x\sqrt{1-y^2} + y\sqrt{1-x^2}\}, & \text{if } 0 < x, y \le 1 \text{ and } x^2 + y^2 > 1 \\ \pi - \pi - \sin^{-1} \{x\sqrt{1-y^2} + y\sqrt{1-x^2}\}, & \text{if } -1 \le x, y < 0 \text{ and } x^2 + y^2 > 1 \end{cases}$$

Property IX :

$$sin^{-1} x - sin^{-1} y = \begin{cases} sin^{-1} \{x\sqrt{1-y^2} - y\sqrt{1-x^2}\}, & \text{if } -1 \le x, y \le 1 \text{ and } x^2 + y^2 \le 1 \\ n - sin^{-1} \{x\sqrt{1-y^2} - y\sqrt{1-x^2}\}, & \text{if } 0 < x \le 1, -1 \le y \le 0 \text{ and } x^2 + y^2 > 1 \\ -\pi - sin^{-1} \{x\sqrt{1-y^2} - y\sqrt{1-x^2}\}, & \text{if } -1 \le x < 0, 0 < y \le 1 \text{ and } x^2 + y^2 > 1 \end{cases}$$

Property X:
$$cos^{-1} x + cos^{-1} y = \begin{cases} cos^{-1} \left(xy - \sqrt{1-x^2} \sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \ge 0 \\ 2\pi - cos^{-1} \left(xy - \sqrt{1-x^2} \sqrt{1-y^2}\right), & \text{if } -1 \le x, y \le 1 \text{ and } x + y \le 0 \end{cases}$$

Property XI:

$$\cos^{-1} x - \cos^{-1} y = \begin{cases} \cos^{-1} \{xy + \sqrt{1 - x^2} \sqrt{1 - y^2}\}, & \text{if } -1 \le x, \, y \le 1 \text{ and } x \le y \\ -\cos^{-1} \{xy + \sqrt{1 - x^2} \sqrt{1 - y^2}\}, & \text{if } -1 \le y \le 0, \, 0 < x \le 1 \text{ and } x \ge y \end{cases}$$

This result can be established in the same way as in property X.

Property XII :

(i)
$$2 \tan^{-1} x = \begin{cases} \tan^{-1} \left(\frac{2x}{1-x^2}\right), & \text{if } -1 < x < 1 \\ \pi + \tan^{-1} \left(\frac{2x}{1-x^2}\right), & \text{if } x > 1 \\ -\pi + \tan^{-1} \left(\frac{2x}{1-x^2}\right), & \text{if } x < -1 \end{cases}$$

Property XIII :

(i)
$$2 \tan^{-1} x = \begin{cases} \sin^{-1} \left(\frac{2x}{1+x^2} \right), & \text{if } -1 \le x \le 1 \\ \pi - \sin^{-1} \left(\frac{2x}{1+x^2} \right), & \text{if } x > 1 \\ -\pi - \sin^{-1} \left(\frac{2x}{1+x^2} \right), & \text{if } x < -1 \end{cases}$$

(ii) 2 tan⁻¹ x =
$$\begin{cases} \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text{if } 0 \le x < \infty \\ -\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text{if } -\infty < x \le 0 \end{cases}$$

Property XIV : (i)
$$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} = \tan^{-1} \frac{x}{\sqrt{1 - x^2}}$$

$$\cot^{-1}\frac{\sqrt{1-x^2}}{x} = \sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right) = \csc^{-1}\left(\frac{1}{x}\right)$$

Where $x \ge 0$

(ii)
$$\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2} = \tan^{-1} \left(\frac{\sqrt{1 - x^2}}{x} \right)$$

= $\cot^{-1} \left(\frac{x}{\sqrt{1 - x^2}} \right) = \sec^{-1} \frac{1}{x} = \csc^{-1} \left(\frac{1}{\sqrt{1 - x^2}} \right)$

Where x > 0

(iii)
$$\tan^{-1} x = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}} \right) = \cos^{-1} \left(\frac{1}{\sqrt{1 + x^2}} \right)$$
$$= \cot^{-1} \left(\frac{1}{x} \right) = \sec^{-1} \sqrt{1 + x^2} = \csc^{-1} \left(\frac{\sqrt{1 + x^2}}{x} \right)$$

Property XV :

(i)
$$2 \sin^{-1} x = \begin{cases} \sin^{-1}(2x \sqrt{1-x^2}), & \text{if } -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \\ \pi - \sin^{-1}(2x \sqrt{1-x^2}), & \text{if } \frac{1}{\sqrt{2}} \le x \le 1 \\ -\pi - \sin(2x \sqrt{1-x^2}), & \text{if } -1 \le x \le -\frac{1}{\sqrt{2}} \end{cases}$$

Property XVI :

(i)
$$2\cos^{-1} x = \begin{cases} \cos^{-1}(2x^2 - 1), & \text{if } 0 \le x \le 1\\ 2\pi - \cos^{-1}(2x^2 - 1), & \text{if } -1 \le x \le 0 \end{cases}$$

Property XVII :

$$3 \sin^{-1} x = \begin{cases} \sin^{-1}(3x - 4x^3), & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ \pi - \sin^{-1}(3x - 4x^3), & \text{if } \frac{1}{2} \le x \le 1 \\ -\pi - \sin^{-1}(3x - 4x^3), & \text{if } -1 \le x \le -\frac{1}{2} \end{cases}$$

Property XVIII :

$$3\cos^{-1} x = \begin{cases} \cos^{-1}(4x^3 - 3x), & \text{if } \frac{1}{2} \le x \le 1\\ 2\pi - \cos^{-1}(4x^3 - 3x), & \text{if } -\frac{1}{2} \le x \le \frac{1}{2}\\ 2\pi + \cos^{-1}(4x^3 - 3x), & \text{if } -1 \le x \le -\frac{1}{2} \end{cases}$$

Property XIX :

$$3 \tan^{-1} x = \begin{cases} \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), & \text{if } -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \\ \pi + \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), & \text{if } x > \frac{1}{\sqrt{3}} \\ -\pi + \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), & \text{if } x < -\frac{1}{\sqrt{3}} \end{cases}$$

SOLVED PROBLEMS

Write each of the folloiwng functions in the simplest form : Ex.1

(i)
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$$
, $|x| < a$ (ii) $\tan^{-1}\left(\frac{3a^2x-x^3}{a^3-3ax^2}\right)$, $a > 0$; $\frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$

Sol.

(i)

Let $x = a \sin \theta$. Then,

$$\tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2 - a^2\sin^2\theta}}\right) = \tan^{-1}\left(\frac{a\sin\theta}{a\cos\theta}\right) = \tan^{-1}\left(\tan\theta\right) = \theta = \sin^{-1}\left(\frac{x}{a}\right)$$

Thus,
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \sin^{-1}\left(\frac{x}{a}\right)$$

(ii) Let $x = a \tan \theta$. Then

$$\tan^{-1}\left(\frac{3a^{2}x - x^{3}}{a^{3} - 3ax^{2}}\right) = \tan^{-1}\left(\frac{3a^{3}\tan\theta - a^{3}\tan^{3}\theta}{a^{3} - 3a^{3}\tan^{2}\theta}\right) = \tan^{-1}\left(\frac{3\tan\theta - \tan^{3}\theta}{1 - 3\tan^{2}\theta}\right)$$

$$= \tan^{-1} (\tan 3\theta) = 3\theta = 3 \tan^{-1} \left(\frac{x}{a}\right)$$

Thus,
$$\tan^{-1}\left(\frac{3a^3x - x^3}{a^3 - 3ax^2}\right) = 3\tan^{-1}\left(\frac{x}{a}\right)$$

Ex.2 Simplify :

(i)
$$\tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right)$$
, if $\frac{a}{b}$ tan $x > -1$

(ii)
$$\tan \frac{1}{2} \left(\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right), |x| < 1, y > 0 \text{ and } xy < 1$$

I. (i) We have

Sol. (i)

$$\tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos x + a\sin x}\right) = \tan^{-1}\left(\frac{\frac{a\cos x - b\sin x}{b\cos x}}{\frac{b\cos x + a\sin x}{b\cos x}}\right) = \tan^{-1}\left(\frac{\frac{a}{b} - \tan x}{1 + \frac{a}{b}\tan x}\right)$$

=
$$\tan^{-1}\left(\frac{p-q}{1+pq}\right)$$
, where $p = \frac{a}{b}$ and $q = \tan x$
= $\tan^{-1} p - \tan^{-1} q = \tan^{-1}\left(\frac{a}{b}\right) - \tan^{-1}(\tan x) = \tan^{-1}\left(\frac{a}{b}\right) - x$

(ii) Let $x = \tan \theta$ and $y = \tan \phi$. Then $\tan \frac{1}{2} \left(\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right)$ $= \tan\left(\frac{1}{2}\sin^{-1}\frac{2x}{1+x^2} + \frac{1}{2}\cos^{-1}\frac{1-y^2}{1+y^2}\right) = \tan\left[\frac{1}{2}(2\tan^{-1}x) + \frac{1}{2}[2\tan^{-1}(y)]\right]$ $= \tan \left(\tan^{-1} x + \tan^{-1} y \right) = \tan \left(\theta + \phi \right) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = \frac{x + y}{1 - xy}$ Prove that Ex.3 (i) $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$ (ii) $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1}$ 31 Sol. (i) We have $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\left(\frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \times \frac{7}{24}}\right) = \tan^{-1}\left(\frac{125}{250}\right) = \tan^{-1}\frac{1}{2}$ We have (ii) $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{7}}{1 - \frac{1}{2} \times \frac{1}{7}}\right) = \tan^{-1}\left(\frac{9}{13}\right)$(1) Now, 2 tan⁻¹ $\frac{1}{2}$ + tan⁻¹ $\frac{1}{7}$ = tan⁻¹ $\frac{1}{2}$ + $\left(\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} \right)$ $= \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{9}{13} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{9}{13}}{1 - \frac{1}{2} \times \frac{9}{13}} \right) = \tan^{-1} \left(\frac{31}{17} \right)$ Find the value of : Ex.4 (i) $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ (ii) $tan^{-1}\left(tan\frac{3\pi}{4}\right)$ (iii) $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ We know that $\sin^{-1}(\sin x) = x$ Sol. (i) $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \frac{2\pi}{3}$ But, $\frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal branch of sin⁻¹ x $\sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{2\pi}{3}\right) = \sin\frac{\pi}{3} \text{ and } \frac{\pi}{3} \in \left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$ However, Hence, $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \frac{\pi}{2}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no. : +91-9350679141

(i) We know that
$$\tan^{-1}(\tan 3\pi) = x$$

$$\Rightarrow \tan^{-1}\left(\tan 3\pi\pi\right) = \frac{3\pi}{4}$$
But, $\frac{3\pi}{4} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal branch of $\tan^{-1} x$
However, $\tan 3\pi/4 = \tan\left(\pi + \left(-\pi/4\right)\right) = \tan\left(-\pi/4\right)$ and $\left(-\pi/4\right) = \left(-\pi/2, \frac{\pi}{2}\right)$
Hence, $\tan^{-1}\left(\tan 3\pi/4\right) = -\frac{\pi}{4}$
(ii) We know that $\cos^{-1}(\cos x) = x$

$$\Rightarrow \cos^{-1}\left(\cos^{-\pi}/6\right) = \frac{7\pi}{6}$$
But, $\frac{7\pi}{6} \in [0, \pi]$ which is the principal branch of $\cos^{-1} x$
However, $\cos^{-\pi}/6 = \cos\left(2\pi, \frac{5\pi}{6}\right) = \cos\frac{5\pi}{6}$ and $\frac{5\pi}{6} = (0, \pi)$
Hence, $\cos^{-\pi}\left(\cos\frac{5\pi}{6}\right) = \frac{5\pi}{6}$
Ex.5 Prove that
 $\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{2} - \frac{1}{2}\cos^{-1} x$, for $-\frac{1}{\sqrt{2}} \le x \le 1$
Sol. Let $x = \cos 2 0$. Then, $\sqrt{1+x} = \sqrt{1+\cos 2\theta} = \sqrt{2\cos^{2}\theta} = \sqrt{2}\cos \theta$
and $\sqrt{1-x} = \sqrt{1-\cos 2\theta} = \sqrt{2\sin^{2}\theta} = \sqrt{2} \sin \theta$
 \therefore LHS $= \tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{2}\cos\theta-\sqrt{2}\sin\theta}{\sqrt{2}\cos\theta+\sqrt{2}\sin\theta}\right) = \tan^{-1}\left(\frac{\cos\theta-\sin\theta}{1+\tan\theta}\right) = \tan^{-1}\left[\tan\left(\frac{\pi}{4}-\theta\right)\right]$
Ex.6 Prove that
 $\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right), x \in (0, 1)$
Sol. Let $x = \tan^{2} - \theta = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}(x) = RHS$
Ex.6 Prove that
 $\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right), x \in (0, 1)$
Sol. Let $x = \tan^{2} - (1-x)$, $x = \sqrt{1+(x)} = 1$, $x = \sqrt{1+(\cos 2\theta)} = \frac{1}{2}\cos^{-1}(\cos 2\theta) = \frac{1}{2} \times 2\theta = 0$

Hence, LHS = RHS

Ex.8

Sol.

Ex.9

$$\Rightarrow \qquad x = \frac{-31 \pm \sqrt{961 + 128}}{8} = \frac{-31 \pm 33}{8} = \frac{1}{4} \quad \text{or} \quad -8$$

When x = -8, x² = 64 \neq 2. Hence, we reject this value of x. Hence, the required value is x = $\frac{1}{4}$. We have, $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$ (iv) $\tan^{-1}\left(\frac{2x+3x}{1-(2x)(3x)}\right) = \frac{\pi}{4}$ \Rightarrow $\Rightarrow \qquad \frac{5x}{1-6x^2} = 1 \Rightarrow 6x^2 + 5x - 1 = 0$ $x = \frac{-5 \pm \sqrt{25 + 24}}{12} = \frac{-5 \pm 7}{12} = -1$ or $\frac{1}{6}$ \Rightarrow Now the formula, $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$ holds only when xy < 1Thus, when x = -1, $(2x)(3x) = (-2)(-3) = 6 \ge 1$ So, we reject x = -1 and accept $x = \frac{1}{6}$ Solve for x : $2 \tan^{-1} x = \sin^{-1} \frac{2a}{1+a^2} - \cos^{-1} \frac{1-b^2}{1+b^2}$ Let $a = \tan \theta$ and $b = \tan \phi$. Then, $\sin^{-1}\left(\frac{2a}{1+a^2}\right) = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)$ $= \sin^{-1} (\sin 2\theta) = 2\theta$ $\cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \cos^{-1}\left(\frac{1-\tan^2\phi}{1+\tan^2\phi}\right)$ and = cos⁻¹ (cos 2φ) = 2φ RHS = $2\theta - 2\phi = 2(\theta - \phi)$ = 2 (tan⁻¹ a - tan⁻¹ b) Hence. So, the given equation implies 2 tan⁻¹ x = 2 (tan⁻¹ a – tan⁻¹ b), -1 < a < 1, -1 < b < 1 $\tan^{-1} x = \tan^{-1} a - \tan^{-1} b$ $= \tan^{-1}\left(\frac{a-b}{1+ab}\right); ab > -1$ $x = \frac{a-b}{1+ab}; ab > -1$ \Rightarrow Solve : (i) $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$

- (ii) $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x \ (x > 0)$
- (iii) $sin [2 cos^{-1} {cot (2 tan^{-1} x)}] = 0$

$$\begin{aligned} & \text{Sol.} \quad (i) \qquad \text{We have} \qquad 2 \tan^{-1} (2 \cos x) = \tan^{-1} (2 \cos x) \\ & \Rightarrow \qquad \tan^{-1} \left(\frac{2 \cos x}{1 - \cos^2 x} \right) = \tan^{-1} \left(\frac{2}{|\sin x|} \right) \\ & \Rightarrow \qquad 2 \cos^2 x = \frac{2}{|\sin x|} \qquad \Rightarrow \qquad \sin x \cos x = 1 - \cos^2 x = \sin^2 x \\ & \Rightarrow \qquad \sin x (\cos x - \sin x) = 0 \qquad \Rightarrow \qquad \sin x = 0 \text{ or } \cos x - \sin x = 0 \\ & \text{when} \qquad \cos x - \sin x = 0 \text{ or } \tan x = 1, x = \pi \pi + \frac{\pi}{4} \\ & (ii) \qquad \text{We have, } \tan^{-1} \frac{1 - x}{1 + x} = \frac{1}{2} \tan^{-1} x \qquad (x > 0) \\ & \Rightarrow \qquad \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad (x > 0) \\ & \Rightarrow \qquad \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad (x > 0) \\ & \Rightarrow \qquad \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad (x > 0) \\ & \Rightarrow \qquad \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad (x > 0) \\ & \Rightarrow \qquad \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad (x > 1) \\ & \Rightarrow \qquad \tan^{-1} x = \frac{2}{3} x \frac{\pi}{4} = \frac{\pi}{6} \Rightarrow x = \tan^{-1} \frac{\pi}{6} = \frac{1}{\sqrt{3}} \\ & (ii) \qquad \text{We have, } \qquad \sin [2 \cos^{-1} (\cot (2 \tan^{-1} \frac{1 - x^2}{2x})]] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[\cot^{-1} (\frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[\cot \left[(-1 - \frac{1 - x^2}{2x}) \right] \right] \right] = 0 \\ & \Rightarrow \qquad \sin \left[2 \cos^{-1} \left[- \frac{1 - x^2}{2x} \right] \right] = 0 \\ & \Rightarrow \qquad 1 - x^2 = 0 \quad \text{or} \quad \left(\frac{1 - x^2}{2x} \right)^2 = 1 \\ & \Rightarrow \qquad x = \frac{1 - x^2}{x} = 0 \quad \text{or} \quad \sqrt{1 - \left(\frac{1 - x^2}{2x} \right)^2} = 0 \\ & \Rightarrow \qquad 1 - x^2 = 0 \quad \text{or} \quad \left(1 - \frac{x^2}{2x} \right)^2 = 1 \\ & \Rightarrow \qquad x = \frac{1 - x^2}{x} = 1 = 0 \quad \text{or} \quad x = \frac{1 - x^2}{x} = 1 = 0 \\ & \Rightarrow \qquad x = -1 + \sqrt{2} (x - 1 = 0 \quad \text{or} \quad x = 2x - 1 = 0 \\ & \Rightarrow \qquad x = -1 \pm \sqrt{2} \\ \text{Hence, } x = 1, -1 \pm \sqrt{2}, 1 \le \sqrt{2} \end{aligned}$$

Page # 36

 $\tan\left[\frac{1}{2}\left(\cos^{-1}\frac{\sqrt{5}}{3}\right)\right]$

(i)
$$\cos^{-1}\left(\cos\frac{4\pi}{3}\right)$$
 (ii) $\cos^{-1}(\cos 10)$ (iii)

Q.2 Prove that

$$\tan^{-1}\left(\frac{a-b}{1+ab}\right) + \tan^{-1}\left(\frac{b-c}{1+bc}\right) + \tan^{-1}\left(\frac{c-a}{1+ca}\right)$$
$$= \tan^{-1}\left(\frac{a^3-b^3}{1+a^3b^3}\right) + \tan^{-1}\left(\frac{b^3-c^3}{1+b^3c^3}\right) + \tan^{-1}\left(\frac{c^3-a^3}{1+c^3a^3}\right)$$

Q.3 Prove that

$$\sin^{-1} \frac{12}{13} + \cos^{-1} \frac{4}{5} + \tan^{-1} \frac{63}{16} = \pi$$

Q.4 Prove that

$$2 \tan^{-1}\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right) = \cos^{-1}\left(\frac{b+a\cos x}{a+b\cos x}\right) \text{ for } 0 < b \le a \text{ and } x \ge 0$$

Q.5 If
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2}$$
, prove that
xy + yz + zx = 1

- **Q.6** If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$, prove that $x^2 + y^2 + z^2 + 2xyz = 1$
- **Q.7** If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi$, prove that

 $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$

- **Q.8** Solve : $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$
- **Q.9** Solve : $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$

$$\cos^{-1}x - \cos^{-1}y = \frac{\pi}{3}$$

- **Q.10** If sin $[2 \cos^{-1} {\cot (2 \tan^{-1} x)}] = 0$, find x.
- $\label{eq:Q.11} \textbf{ If } -1 \leq x, \ y, \ z \leq 1, \ \text{such that } \sin^{-1}x \ + \ \sin^{-1}y \ + \ \sin^{-1}z \ = \ \frac{3\pi}{2} \ ,$ find the value of

$$x^{2000} + y^{2001} + z^{2002} - \frac{9}{x^{2000} + y^{2001} + z^{2002}}$$

Q.12 Prove that

$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} + \dots + \tan^{-1}\frac{1}{n^2 + n + 1} = \tan^{-1}\left(\frac{n}{n+2}\right)$$

Q.13 Sum to n terms the series

$$\tan^{-1}\left(\frac{x}{1+1\cdot 2x^2}\right) + \tan^{-1}\left(\frac{x}{1+2\cdot 3x^2}\right) + \tan^{-1}\left(\frac{x}{1+3\cdot 4x^2}\right) + \dots$$

Q.14 Establish the algebraic relation between x, y, z if $\tan^{-1}x$, $\tan^{-1}y$, $\tan^{-1}z$ are in A.P. and if further x, y, z are also in A.P., their prove that x = y = z

3

- **Q.15** If $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2}$ and $x + y + z = \sqrt{3}$, then prove that x = y = z
- Q.16 Solve that equation for x ;

$$3\sin^{-1}\frac{2x}{1+x^2} - 4\cos^{-1}\frac{1-x^2}{1+x^2} + 2\tan^{-1}\frac{2x}{1-x^2} = \frac{1-x^2}{1-x^2}$$

Q.17 If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$, prove that

$$\theta = \pm \frac{1}{2} \sin^{-1} \frac{3}{4}$$

- **Q.18** Prove that $\tan^{-1} \frac{yz}{xr} + \tan^{-1} \frac{zx}{yr} + \tan^{-1} \frac{xy}{zr} = \frac{\pi}{2}$ where $x^2 + y^2 + z^2 = r^2$
- Q.19 Prove that

$$\tan^{-1}\left(\frac{a_{1} x - y}{a_{1} y + x}\right) + \tan^{-1}\left(\frac{a_{2} - a_{1}}{a, a_{2} + 1}\right) + \tan^{-1}\left(\frac{a_{3} - a_{2}}{a_{2} a_{3} + 1}\right) + \dots + \tan^{-1}\left(\frac{a_{n} - a_{n-1}}{a_{n} a_{n-1} + 1}\right) + \tan^{-1}\left(\frac{1}{a_{n}}\right) = \tan^{-1}\left(\frac{x}{y}\right)$$

Q.20 If a_1, a_2, a_3, \dots form an A.P. with common difference d (a > 0, d > 0) prove that

$$\tan^{-1} \frac{d}{1 + a_1 a_2} + \tan^{-1} \frac{d}{1 + a_2 a_3} + \dots + \tan^{-1} \frac{d}{1 + a_n a_{n+1}} = \tan^{-1} \frac{a_{n+1} - a_n}{1 + a_1 a_{n+1}}$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no. : +91-9350679141

Page # 39

