Respiration in Plants

Introduction

Plants, like all living organisms, undergo respiration to generate energy.

Unlike animals, plants do not have specialized respiratory organs.

Every part of a plant (leaves, stems, roots) respires independently by absorbing oxygen and releasing carbon dioxide.

Mechanism of Respiration in Plants

Plants utilize glucose ($C_6H_{12}O_6$) and oxygen (O_2) to produce carbon dioxide (CO_2), water (H_2O), and energy (ATP).

During the day:

- Photosynthesis occurs, where carbon dioxide is absorbed, and oxygen is released.
- Oxygen produced during photosynthesis is used for respiration.
- Hence, plants do not take in extra oxygen from the environment during the day.

During the night:

- Photosynthesis does not occur due to the absence of sunlight.
- Plants take in oxygen from the air and release carbon dioxide.

Key Features of Plant Respiration

- Plants do not have respiratory organs.
- Each part of a plant respires independently.
- Gas exchange (O₂ & CO₂) occurs through diffusion a slow process.
- Different plant parts have different methods of oxygen absorption and CO₂ release.

Respiration in Different Parts of a Plant

Respiration in Leaves

The exchange of gases occurs through tiny pores called stomata present on leaf surfaces.

Process of gas exchange in leaves:

- Oxygen from the air enters the leaf through stomata.
- Oxygen reaches all leaf cells by diffusion.
- Cellular respiration occurs, using oxygen and releasing carbon dioxide.
- The produced carbon dioxide exits the leaf via stomata.

Stomatal Behavior:

Daytime:

- Stomata open for photosynthesis (CO₂ intake).
- Oxygen produced is used for respiration.

Nighttime:

- Stomata mainly facilitate oxygen intake for respiration.
- Carbon dioxide is released.

Respiration in Roots

Root hairs absorb oxygen from the air present between soil particles.

Process of gas exchange in roots:

- Oxygen present in air spaces between soil particles diffuses into root hairs.
- Oxygen is transported to all root cells for respiration.
- Carbon dioxide produced diffuses out into the soil.

Effect of Overwatering:

- Excess water fills the air spaces in the soil.
- This prevents oxygen absorption by roots.
- Lack of oxygen leads to root suffocation, causing plant death.

Summary of Plant Respiration

Aspect	Respiration in Leaves	Respiration in Roots
Gas Exchange	Through stomata	Through root hairs
Oxygen Intake	From the air via stomata	From air in soil particles
Carbon Dioxide Release	Through stomata into air	Diffuses into soil
Process	Diffusion	Diffusion

Aspect	Respiration in Leaves	Respiration in Roots
Importance	Essential for photosynthesis and survival	Essential for root function and growth
Effect of Environmental Conditions	Stomata open/close based on need	Waterlogging can cause suffocation

Conclusion

- Respiration is essential for energy production in plants.
- Leaves use stomata, while roots use root hairs for gas exchange.
- The process occurs continuously, but gas exchange varies during day and night.
- Overwatering can harm plant respiration by blocking oxygen supply to roots.