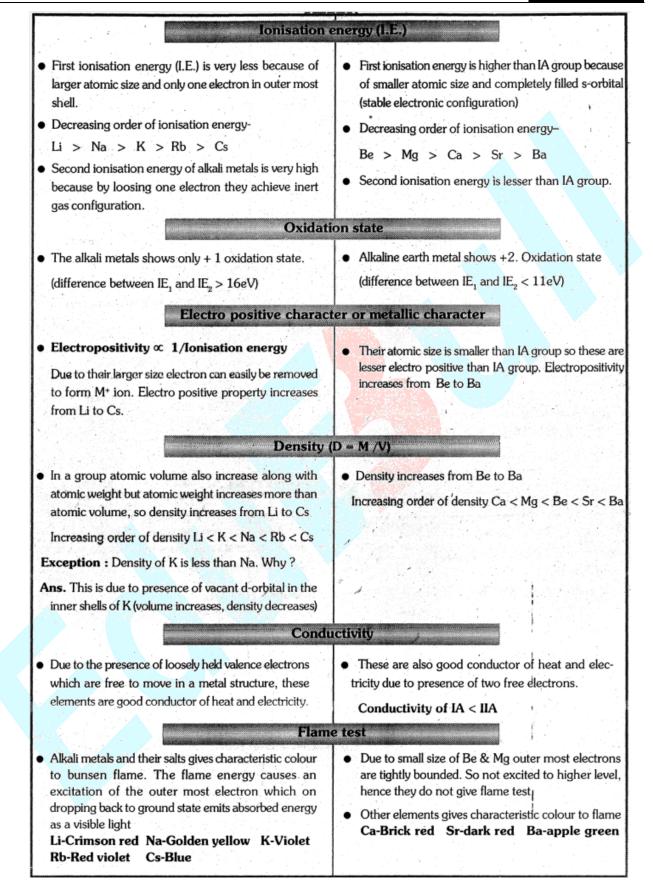
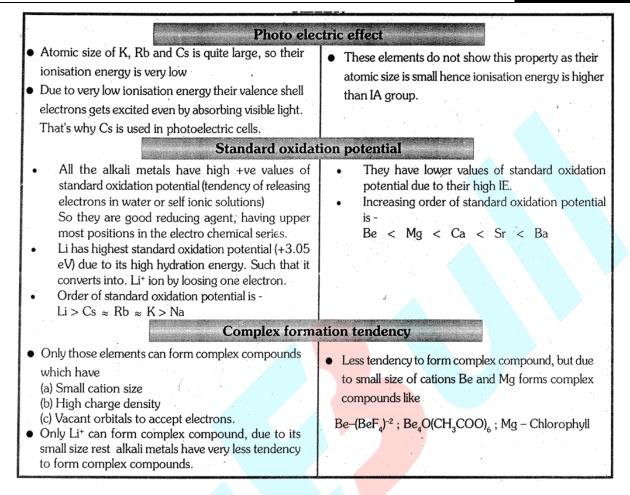
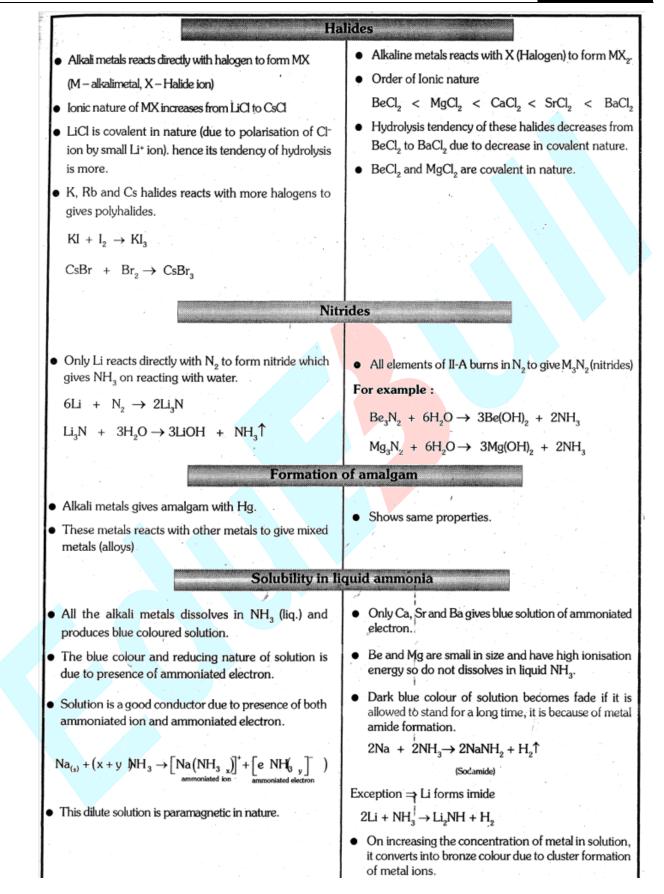

s- BLOCK ELEMENTS


3.0 INTRODUCATION


The s-block elements of the Periodic Table are those in which the last electron enters in the outermost s-orbital. As the s-orbital can accommodate only two electrons, two groups (1 & 2) belong to the s-block of the Periodic Table. Group 1 of the Periodic table consists of the elements: lithium, sodium, potassium, rubidium, cesium and francium. They are collectively known as the alkali metals. They are so called because they form hydroxides on reaction with water which are strongly alkaline in nature. The elements of Group 2 include Beryllium, Magnesium, Calcium, Strontium, Barium and Radium. These elements With the exception of beryllium are commonly known as the alkaline earth metals. They are so called because their oxides and hydroxides are alkaline in nature and these metal oxides are found in the earth's crust.


3.1 PHYSICAL PROPERTIES OF S-BLOCK ELEMENTS

The atomic, physical and chemical properties of alkali metals are discussed below. Atomic and Physical Properties of the Alkaline Metals



Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Oxide ion [O ²⁻] :	with oxygen
 Li forms mainly Li₂O (Lithium oxide). 	 Alkaline earth metals reacts with O₂ to form 'MC type oxides
이는 방법을 가장 한 것이 같아요.	(M = Be, Mg, Ca, Sr, Ba)
Peroxide $[O_2^{-2}]$:	
• Na reacts with O_2 to form mainly peroxide (Na ₂ O ₂).	• In IIA only Ca, Sr, Ba form peroxide.
Super oxide [O ₂ -] :	Ex. CaO_2 , SrO_2 , BaO_2
• K, Rb and Cs forms MO ₂ type oxides (super oxides) in excess of oxygen. Super oxides are paramagnetic and coloured.	
$M \xrightarrow{O_2} M_2 O \xrightarrow{O_2} M_2 O_2 \xrightarrow{O_2} MO_2$	BeO shows amphoteric property.
Oxide peroxide super oxide	$MgO \rightarrow$ weak basic
(Li ₂ O) (Na ₂ O ₂) (KO ₂ , RbO ₂ , CsO ₂)	
Stability order of different oxide of a metal is due to	CaO, SrO & BaO \rightarrow Strong basic
Lattice Energy	Basic properties increases from BeO to BaO.
Normal oxide > Peroxide > Superoxide	
Reaction wi	th hydrogen
• Alkali metals combine with H ₂ forming ionic hydrides	• Except Be all the alkaline metals forms MH ₂ typ
$2M + H_2 \rightarrow 2MH$	hydrides, (MgH ₂ , CaH ₂ , SrH ₂ , BaH ₂) on heatin
• Hydrides of alkali metals are attacked by water to	directly with H ₂
give back hydrogen	• BeH ₂ is prepared by action of BeCl ₂ with LiAlH ₄
$MH + H_2O \rightarrow MOH + H_2$	2BeCl_2 + LiAlH ₄ \rightarrow 2BeH_2 + LiCl + AlCl ₄
LiH, NaH, KH, RbH, CsH	reducing agent
Thermal stability decrease, Basic property increases	• BeH ₂ and MgH ₂ are covalent, other are ionic.
Reaction	with water
• Alkali metals react vigorously with water forming hydroxides with the liberation of H ₂ .	These metals reacts slowly with water gives H ₂ and the state budgesides
$2M + 2H_2O \rightarrow 2MOH + H_2$	metals hydroxides.
 Reactivity with water increases from Li to Cs. 	$M + 2H_2O \rightarrow M(OH)_2 + H_2$
$Li \rightarrow$ least reactive towards water	Be does not reacts with water
$Na \rightarrow reacts vigorously$	 Mg reacts only with hot water
$K \rightarrow$ reacts producing a flame	• Ca, Sr, Ba reacts with cold water but not a
Rb, Cs \rightarrow reacts explosively.	energetically as alkali metals.
 Monoxides gives strongly alkaline solution with water 	회사는 물 생활님께는 이 것이 같아. 아파 모님 아파
$M_2O + H_2O \rightarrow 2MOH$	• from $Be(OH)_2$ to $Ba(OH)_2$ basic nature increases.

		NER'S BOX-1	
1.	All alkali metal superoxides contain the (1) paramagnetic (3) oxidizing agents	[O ₂ ⁻] ion. They are- (2) colored compou (4) all of these	inds
2.	Which of the following is soluble in orga (l) LiCl (2) NaCl	anic solvents like ethanc (3) KCl	ol? (4) RbCl
3.	Which of the following is the correct ord (1) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$ (3) $Cs^+ < Rb^+ < K^+ < Na^+ < Li^+$	ler of hydrated radii? (2) $Rb^+ < Na^+ < Li^-$ (4) $Li^+ < K^+ < Na^+$	
4.	Which of the following has the maximum (1) LiHCO ₃ (2) NaHCO ₃	n solubility in water? (3) KHCO ₃	(4) RbHCO ₃
5.	As compared to potassium, sodium has. (1) Lower electronegativity (3) Larger atomic radius	(2) Higher ionization (4) Lower melting	-
6.	Which of the following statement is corr (1) Cation is less stable than the parent a (2) Cation is smaller size than the parent (3) Size of cation and parent atom is the (4) Cation is greater in size than the pare	tom atom same	als
7.	 Which of the following is not true? (1) Group 2 elements are etectropositive, 1 elements. (2) the reducing power of group 2 elements (3) Be has the most negative standard red (4) The magnesium cation is more easily the group. 	nts increases down the gluction potential.	group
8.	Which of the following halides are ionic (1) BaX ₂ (2) CaX ₂	in nature ? (3) SrX ₂	(4) All of these
9.	Which of the following compounds is hi (1) CaF_2 (2) MgF_2	ghly soluble in water? (3) BeF ₂	(4) BaF ₂
10.	Which of the following carbonates is the (1) BeCO ₃ (2) MgCO ₃	most thermally staple? (3) CaCO ₃	(4) BaCO ₃

COMPOUNDS OF s-BLOCK ELEMENTS

3.2 SODIUM CHLORIDE NaCl

Occurrence : Sea water is the main source and also found in salt lakes. **Preparation :**

- (i) Sea water NaCl(2.7 2.9%) $\xrightarrow{\text{Evaporation}}$ crude NaCl
- (ii) It contains impurities Na_2SO_4 , $MgCl_2$, $CaCl_2$ etc.
- (iii) Insoluble impurities removed by filtration.
- (iv) Filtrate $\xrightarrow{HClgas passed}$ Pure NaCl precipitation (Common ion effect)
- (v) $MgCl_2$ and $CaCl_2$ are more soluble h water so left in solution.

Properties :

(i)Table salt is slightly hygroscopic due to the presence of magnesium and calcium chlorides in small amounts.

(ii) Reaction with AgNO₃

 $NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl(white ppt.)$

Uses (i) as a preservative for pickles, meat and fish.

(ii) For making freezing mixture with Ice.

3.3 SODIUM HYDROXIDE [Caustic Soda(NaOH)]

Manufacture : By electrolysis of NaCl.

(a) Nelson Cell or Diaphragm Cell : The following reactions takes place –

 $\begin{array}{c} \operatorname{NaCl}(\operatorname{aq.}) \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} \stackrel{\circ}{H} \operatorname{Na^{+}} + \operatorname{Cl^{-}} \\ H_2 O \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} \stackrel{\circ}{H} \stackrel{\circ}{H} + \operatorname{OH^{-}} \end{array} \right\} \rightarrow \operatorname{NaOH} + H_2 + \operatorname{Cl}_2$

At cathode (Perforated steel): $2H^+ + 2e^- \longrightarrow H_2(g)$ At anode (Carbon): $2Cl^-(aq.) \longrightarrow Cl_2(g) + 2e^-$

(b) Castner - Kellner Cell : (Hg – Cathode Process) Electrolyte (Brine) NaCl $\frac{2}{3}$ ⁺ Na⁺ + Cl⁻

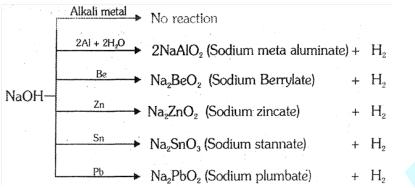
On electrolysis -

At Cathode (Hg)

 $Na^+ + e^- \longrightarrow Na$ and $Na + Hg \longrightarrow Na.Hg$ (amalgam) At anode (Graphite)

 $2Cl^{-} \longrightarrow Cl_2(g) + 2e^{-}$ and $2Na.Hg + 2H_2O \longrightarrow 2NaOH + H_2 + 2Hg$

Properties :


- (i) It is deliquescent white crystalline solid.
- (ii) It absorbs CO_2 from air forming Na_2CO_3
- (iii) NaOH is strong base

NaOH
$$\xrightarrow{\text{SiO}_2}$$
 Na₂SiO₃ + H₂O
Al₂O₃ 2NaAlO₂ + H₂O

(iv) **Reaction with non metals :** No reaction with H_2 , N_2 and C

NaOH _______ Si ____ Na₂SiO₃ (sodium silicate)

(v) **Reaction with Metal :**

(vii) The hydroxides of aluminium, zinc, lead and tin, however, dissolve in excess of sodium hydroxide giving dear solution which can also be obtained when these metals are acted upon by the concentrated solution of sodium hydroxide.

 $Zn(OH)_2 + 2OH^- \longrightarrow [Zn(OH_4)]^{2-}$

> [Zn(OH₄)]² A Zincate ion

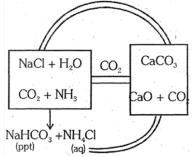
 $Al(OH)_3 + 3OH \longrightarrow [Al(OH)_6]^{3-}$ Aluminate ion

(viii) Reaction with ZnCl₂ or ZnSO₄. (a) $ZnCl_2 + 2NaOH \longrightarrow Zn(OH)_2 \downarrow + 2NaCl$ (b) $Zn(OH)_2 + 2NaOH \longrightarrow Na_2 [Zn(OH)_4]$

(Soluble complex)

Uses (i) In the manufacture of soap, rayon, dyes, paper and drugs. (ii) In petroleum refining.

3.4 SODIUM BICARBONATE OR BAKING SODA (NaHC03) and SODIUM CARBONATE OR WASHING SODA (Na₂CO₃.10H₂O)


Preparation : Solvay Process (Commercial Scale)/ Ammonia Soda Process NH3

- (i) $CaCO_3 \longrightarrow CaO + CO_2$
- (ii) $NH_3 + H_2O + CO_2 \longrightarrow NH_4HCO_3$
- (iii) $NaCl + NH_4HCO_3 \longrightarrow NH_4Cl + NaHCO_3$ (ppt)
- (iv) Sodium carbonate is prepared by heating of NaHCO₃ $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O$
- (v) $2NH_4Cl + CaO \longrightarrow CaCl_2 + 2NH_3 + H_2O$ (Bye-product)

Note : Potassium bicarbonate (KHCO₃) cannot be prepared by Solvay process as it is soluble in water.

Properties of NaHCO₃:

- (i) Hydrolysis
- (ii) Effect of heat (temp. $> 100^{\circ}$ C)
- (iii) Reaction with acids gives CO₂
- (iv) Reaction with base

 $2NaHCO_{3} \longrightarrow Na_{2}CO_{3} + H_{2}O + CP_{2}\uparrow$ $NaHCO_{3} + HCl \longrightarrow NaCl + H_{2}O + CO_{2}\uparrow$ $NaHCO_{3} + NaOH \longrightarrow Na_{2}CO_{3} + H_{2}O$

NaHCO₃ + H₂O $\frac{1}{2}$ \hat{T} NaOH + H₂CO₃

Note: Reaction(iii) and (iv) explain amphoteric behaviour of NaHCO₃. **Properties of Na₂CO₃**

(i) Efflorescence :

 $Na_2CO_3.10H_2O$ when exposed to air it gives out nine out of ten H_2O molecules. $Na_2CO_3.10H_2O \longrightarrow Na_2CO_3.H_2O + 9H_2O$ (Monohydrate)

This process is called efflorescence, Hence washing soda loses weight on exposure to air.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Hydrolysis : Aqueous solution of Na₂CO₃ is alkaline in nature due to anionic (ii) hydrolysis.

$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{-2} \text{ and } CO_3^{-2} + H_2O \ddagger \uparrow H_2CO_3 + 20H^-$$

(Carbonic acid)

In the preparation of baking powder. Uses of NaHCO₃ (i)

> In the preparation of effervescent drinks. (ii)

(iii) In the fire extinguishers.

As antacid medicine (removing acidity) (iv)

Uses of Na₂CO₃

- For making fusion mixture $(Na_2CO_3 + K_2CO_3)$
- (i)
 - In the manufacture of glass, caustic soda, soap powders etc. (ii)
 - (iii) In laundries and softening of water.

3.5 CALCIUM OXIDE [Quick lime (CaO)]

Preparation : By heating limestone at 800°C.

 $CaCO_3$ $\hat{\ddagger}$ $\overset{\circ}{}^{\otimes 00^{\circ}C_{1}}$ $CaO + CO_2$

Properties :

(i)	Action of water : CaO + H ₂ O -	\longrightarrow Ca(OH) ₂
	(quick lime)	(Slaked lime)

(ii) **Basic Nature :** $CaO + SiO_2 \xrightarrow{\Delta} CaSiO_3$ (Calcium silicate) $CaO + P_4O_{10} \xrightarrow{\Delta} 2Ca_3(PO_4)_2$ (Calcium phosphate)

(iii) Reaction with carbon :

$$CaO + 3C \xrightarrow{2000^{\circ}C} CaC_2 + CO^{\uparrow}$$
(Calcium carbide)

Uses of CaO:

- In the manufacture of bleaching powder,/ cement, glass, calcium carbide etc. (i)
- In the purification of sugar (ii)
- As a drying agent for NH₃ and C₂H₅OH (iii)
- As basic lining in furnaces. (iv)
- For making Soda lime (v)

3.6 **CALCIUM HYDROXIDE (Slaked limeCa(OHM**

Preparation : By the action of water on quick lime

 $CaO + H_2O \longrightarrow Ca(OH)_2 + heat (slaking of lime)$

Properties of Ca(OH)₂

Action of CO_2 : · Ume water turns milky on passing CO_2 gas. (i)

$$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$$

Milkiness

$$CaCO_3 \xrightarrow{Excess of} Ca(HCO_3)_2 \xrightarrow{\Delta} CaCO_3$$

(soluble)

(ii) Action of Chlorine :

 $Ca(OH)_2 + Cl_2 \xrightarrow{below 35^{\circ}C} CaOCl_2 + H_2O$ Bleaching powder dry $2Ca(OH)_2 + 2Cl_2 \xrightarrow{\text{redhot}} 2CaCl_2 + 2H_2O + O_2\uparrow$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Uses of Ca(OH)₂

- For softening of hard water. (i)
- For purification of sugar and Coal gas. (ii)
- In the manufacture of bleaching powder, Caustic soda and soda lime (iii)
- In preparation of mortar, plaster and white washing. (iv)

3.7 CALCIUM SULPHATE [Gypsum CaSO₄.2H₂O]

Preparation : CaSO₄.2H₂O is naturally occuring calcium sulphate. It can be obtained by the action of dil.H₂SO₄ on a soluble calcium salt below 60°C.

 $CaCl_2 + H_2SO_4 \longrightarrow 2HCl + CaSO_4 \downarrow$ dilute

white ppt

Properties of Gypsum

Action of heat : (i)

 $2(\text{CaSO}_{4}.2\text{H}_{2}\text{O}) \xrightarrow[-3\text{H}_{2}\text{O}]{}^{120^{\circ}\text{C}} \rightarrow 2(\text{CaSO}_{4}).\text{H}_{2}\text{O} \xrightarrow{200^{\circ}\text{C}} \rightarrow 2\text{CaSO}_{4} + \text{H}_{2}\text{O}$ (Plaster of paris) (Anhydride) (Gypsum)

It forms an important fertilizer (NH₄)₂SO₄ (ii)

 $CaSO_4 + 2NH_3 + CO_2 + H_2O \longrightarrow CaCO_3 + (NH_4)_2SO_4$

Uses of Gypsum

- In the preparation of plaster of paris (i)
- Anhydrous CaSO₄ used as drying agent. (ii)
- Anhydrite (CaSO₄) is used for manufacture of sulphuric acid, ammonium sulphate. (iii)

3.8 PLASTER OF PARIS [POP) 2(CaSO₄).H₂O

Preparation : It is obtained when gypsum is heated at 120°C

 $2(CaSO_4.2H_2O) \longrightarrow 2(CaSO_4).H_2O + 3H_2O$

(Gypsum) (Plaster of paris)

Properties of POP

It is a white powder. (i)

It has the property of setting to a hard mass when a paste with water is allowed to stand (ii) aside for sometime.

When it is heated at 200°C, anhydrous CaSO₄ is formed. (iii)

Uses of POP

- In surgery for setting broken bones (i)
- (ii) In making casts for toys, statues etc.
- (iii) In making blackboard chalks.

3.9 SOME IMPORTANT POINTS TO REMEMBER.

ANOMALOUS BEHAVIOR OF LITHIUM

- On account of its small size it exerts the greatest polarising effect out of all the alkali metals • and ions, consequently covalent character is developed.
- Li has the highest ionisation energy and electronegativity as compared to other alkali metals. •
- It is not affected by air easily and does not lose its lusture even on melting.
- It is more harder and lighter than other alkali metal. •
- It reacts slowly with water to liberate hydrogen. .
- When burnt in air or oxygen, it forms only monoxide, Li₂O However, the rest of the alkali metals give peroxide or superoxides.
- Li₂O is less basic oxides than of other alkali metals.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

• Lithium hydroxide decomposes when red heated to form up. Hydroxides of other alkali metal do not decompose.

 $2\text{LiOH} \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{H}_2\text{O}$

- Li_2CO_3 is less stable, as it decomposes on heating. $\text{Li}_2\text{CO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{CO}_2$
- Li_2SO_4 is the only alkali metal sulphate, which does not form double salts Ex. Alum.
- Li when heated in NH₃ forms imide Li₂NH while other alkali metals form amides. MNH₂
- Lithium shows resemblance with magnesium, an element of group IIA.

This resemblance is termed as diagonal relationship.

Similariteis between lithium and Magnesium.

(i) Both lithium and magnesium are harder and lighter than the other elements in their respective groups.

(ii) Lithium and magnesium reacts slowly with cold water. Their oxides and hydroxides are much less soluble and their hydroxides decomposes on heating. They both form nitride by direct combination with nitrogen, Li_3N and Mg_3N_2

(iii) The oxides, up and MgO do not combine with excess oxygen to give a peroxide or a superoxide.

(iv) The carbonates of lithium and magnesium decomposes easily on heating to form the oxide and CO_2 . Solid bicarbonates are not formed by lithium and magnesium.

(v) Both LiCl and MgCl₂ are soluble in ethanol.

(vi) Both LiCl and $MgCl_2$ are deliquescent and crystallise from their aqueous solution as hydrates, $LiCl_2.H_2O$ and $MgCl.8H_2O$

ANOMALOUS BEHAVIOR OF BERYLUUM

- It is the hardest of all alkaline earth metal as maximum metallic bonding is there due to it's smallest size.
- The melting and boiling points of the beryllium are the highest.
- It is least reactive due to highest ionisation potential.
- Due to high charge density its polarising effect is highest and it forms covalent bond.
- It dissolves in allkalies with the evolution of hydrogen
 - $Be + 2NaOH + 2H_2O \longrightarrow Na_2BeO_2.2H_2O + H_2$

Sodium beryllate

other alkaline earth metals do not read with allaklies.

• Oxides and hydroxides of beryllium are amphoteric in nature.

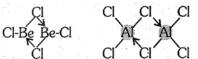
$$BeO + H_2SO_4 \longrightarrow BeSO_4 + H_2O \qquad BeO + 2NaOH \longrightarrow Na_2BeO_2 + H_2O$$

 $Be(OH)_2 + 2HCI \longrightarrow BeCl_2 + 2H_2O \qquad Be(OH)_2 + 2NaOH \longrightarrow Na_2BeO_2 + 2H_2O$

The hydroxide is Insoluble in water and is covalent in nature.

- Like Al_4C_3 , its carbide (Be₂C) on hydrolysis evolves methane.
- Due to its small size it has strong tendency to form complex.
- It shows diagonal relationship with Al.

DIAGONAL SIMILARITV BETWEEN BERYLLIUM AND ALUMINIUM:


In many of its properties, beryllium resembles with aluminium. Thus -

(i) The two elements have same electronegativity and their charge/ radius ratios.

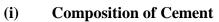
(ii) Both metals are fairly resistant to the action of acids due to the formation of a protective film of oxide on their surface. Both metals are acted upon by strong alkalies to form soluble complexes, beryllates $[Be(OH)_4]^{2-}$ and aluminates, $[Al(OH)_4]^{-}$.

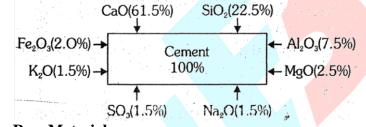
Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(iii) The chlorides of both beryllium and aluminium have bridged chloride structures in vapour phase.

(iv) Salts of these metals f6rm hydrated ions, Ex. $[Be(OH_2)_4]^{2+}$ and $[Al(OH_2)_6]^{3+}$ in aqueous solutions. Due to similar charge/ radius ratios of beryllium and aluminium ions they have a strong tendency to form complexes. For example beryllium forms tetrahedral complexes such as BeF_4^{2-} and $[Be(C_2O_4)_2]^{2-}$ and aluminium forms octahedral complexes like AlF_6^{3-} and $[Al(C_2 O_4)_3]^{3-}$.

3.10 CEMENT


It is a light grey, heavy fine powder, It is a homogenous mixture of silicates and aluminates of calcium, which form more than 90% of the cement are -


(i) Tricalcium silicate

- (ii) Dica.lciumsilicate (slowest setting component)
- (iii) Tricalcium aluminate (fastest setting component)
- (iv) Tetracalcium alummino ferrite

3CaO.SiO₂ 2CaO.SiO₂ 3CaO.Al₂O₃

4CaO.Al₂O₃.Fe₂O₃

(ii) Raw Materials

- Lime Stone It provides CaO
- Clay- It provides Al_2O_3 and $silica(SiO_2)$
- Gypsum- CaSO₄.2H₂O

(iii) Setting of cement : When water is mixed to cement and the mixture is left it become very hard. This property of cement is called setting.

(iv) Mortar : It is a mixture of cement, sand and water to give a proper consistency.

(v) **Concrete :** A mixture of cement, Sand gravel and water is known as concrete.

(vi) **Reinforced concrete cement (RCC):** When concrete is filled in beams made of iron bars, it is called RCC.

Iron imparts extra Strength to the structure.

3.11 BIOLOGICAL ROLE OF SODIUM, POTASSIUM, MAGNESIUM AND CALCIUM (FROM BIOLOGY PORTION)

Power by: VISIONet Info Solution Pvt. Ltd
Website : www.edubull.com

	BEGINNER'S	S BOX-2	
1.	Potassium carbonate cannot be made by the Sol (1) potassium hydrogen carbonate is unstable (2) potassium hydrogen carbonate is rather too s (3) potassium carbonate is insoluble in water (4) potassium carbonate is soluble in water	lvay process becaus	
2.	Plaster of Paris, a white powder, is-		
	(1) CaSO ₄ .2H ₂ O (2) CaSO ₄ . $\frac{1}{2}$ H ₂ O (3)) CaSO ₄	(4) CaSO ₄ .H ₂ O
3.	 Which of the following is incorrect? (1) Cement containing no iron is white. (2) Cement containing excess amount of lime cr (3) Setting of cement is an endothermic process (4) Setting of cement is an example of hydration 	3.	ç.
4.		ky appearance disaj) Soluble Ca(HCO ₃) Calcium compoun	$)_2$ is formed
5.	In the preparation of sodium carbonate which of (1) Slaked lime (2) Lime stone (3)	f the following is us) Lime	sed- (4) quick lime
6.	When chlorine is passed slow over dry slaked product is $(1) \operatorname{CaCl}_2$ (2) CaOCl ₂ (3)	d lime Ca(OH) ₂ at) Ca(ClO ₂) ₂	room temperature, the main (4) Ca(OCl) ₂
7.	Identify the correct statement - (1) Gypsum contains a lower percentage of Ca t (2) Gypsum is obtained by heating plaster of par (3) Plaster of paris can be obtained by hydration (4) Plaster of paris is obtained by partial oxidation	ris n of gypsum	5
8.	Quick lime is prepared on a commercial scale b (1) CaSO4 (2) Ca(NO)2 (3)	by heating in a ro CaCO ₃	otary kiln at 1070-1270 K. (4) Ca(OH) ₂
9.	(iii) cell membrane integrity (iv (1) (i), (ii) (2)) interneuronal trans) blood coagulation) (ii), (iii)) (i), (ii), (iii), (iv)	

				BEGINN	ER'S BOX	-1			
1.	(4)	2.	(1)	3.	(3)	4.	(4)	5.	(2) (4)
6.	(2)	7.	(3)	8.	(4)	9.	(3)	10.	(4)
-					ER'S BOX				
1. 6.	(2) (2)	2. 7.	(2) (1)	3. 8.	(3) (3)	4. 9.	(2) (4)	5.	(2)
J •	(2)	<i>.</i>	(1)	0.	(3)	2.	(1)		