RELATIONS AND FUNCTIONS

1.1 BASIC CONCEPTS AND IMPORTANT RESULTS

(a) Relation from A to B

If A, B are two (non-empty) sets, then any subset of A × B is called a relation from A to B.

If R is a relation from A to B. then

```
domain of R = \{x : x \in A, (x, y) \in R \text{ for some } y \in B\} and range of R = \{y : y \in B, (x, y) \in R \text{ for some } x \in A\}.
```

If R is a relation from A to B, then B is called codomain of R.

If A and B are finite sets containing m and n elements respectively, then the number of relations from A to B = 2^{mn}.

(b) Relation on a set A

- (i) If A is a (non-empty) set, then any subset of A × A is called a relation on A.
- (ii) If A is a finite set containing m elements, then number of relations on $A = 2^{m^2}$.

1.2 Types of relations on A

Let R be a relation on a (non-empty) set A, then R is called a

- (i) reflexive relation iff a R a i.e. $(a, a) \in R$ for all $a \in A$.
- (ii) symmetric relation iff a R b, implies b R a i.e. (a, b) ∈ R implies (b, a) ∈ R for all a, b ∈ A.
- (iii) transitive relation iff a R b, b R c implies a R c i.e. (a, b) ∈ R, (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.
- (iv) equivalence relation iff it is
 - (i) reflexive (ii) symmetric, and (iii) transitive.
- (v) Let R be an equivalence relation on A. if $a \in A$, then the equivalence class of a is denoted by [a] and [a] = $\{x : x \in A, x \in A\}$.
- (vi) As $\phi \subset A \times A$, ϕ is the empty relation on A.
- (vii) As $A \times A \subset A \times A$, $A \times A$ is the universal relation on A.
- (viii) The relation $I_{\Delta} = \{(a, a); \text{ for } a \in A\}$ is the identity relation on A.

1.3 Function

If X, Y be two (non-empty) sets, then a subset f of $X \times Y$, written as $f: X \to Y$, is called a function (or mapping or map) from X to Y iff

- (i) for each $x \in X$, there exists $y \in Y$ such that $(x, y) \in f$ and
- (ii) no two different ordered pairs of f have the same first component.

In other words, a function from X to Y is a rule (or correspondence) which associates to each element x of X, a unique element of Y.

The unique element $y \in Y$ is called the image of the element x of X under the function f. It is denoted by f(x) i.e. y = f(x). The element y is also called the value of the function f at x.

Let f be a function from X to Y then X is the domain of the function and range of $f = \{f(x) : for all x \in X\}$

If 'f' is a function from X to Y, then Y is called codomain of f.

1.4 Types of functions

- 1. One-one function. A function 'f' from X to Y is called one-one (or injective) iff different elements of X have different images in Y i.e. iff $x_1 \neq X_2 \Rightarrow f(x_1) \neq f(x_2)$ for all $x_1, x_2 \in X$, or equivalently, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ for all $x_1, x_2 \in X$.
- **2. Many-one function.** A function 'f' from X to Y is called many-one iff two or more elements of X have same image in Y. In other words, a function 'f' from X to Y is called many-one iff it is not one-one.
- **3. Onto function.** A function 'f' from X to Y is called onto (or surjective) iff each element of Y is the image of atleast one element of X i.e. iff codomain of f = range of f i.e. iff Y = f(X).
- **4. Into function.** A function 'f' from X to Y is called into iff there exists atleast one element in Y which is not the image of any element of X i.e. iff range of f is a proper subset of codomain of f. In other words, a function 'f' from X to Y is called into iff it is not onto.
- **One-one correspondnece.** A function 'f' from X to Y is called a one-one correspondence (or bijective) iff f is both one-one and onto.

Since we weill often be proving that certain functions are one-one or onto or both, so we outlines the techniques to be used:

- (i) To prove that f is one-one, we must show that either $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ for all $x_1, x_2 \in X$ or for all $x_1 \neq x_2 \in X \Rightarrow f(x_1) \neq f(x_2)$.
- (ii) To prove that f is onto, we must show that either for every $y \in Y$, there exists at least one element $x \in X$ such that y = f(x) or f(X) = Y.

If A and B are non-empty) finite sets containing m and n elements respectively, then

- (a) the number of functions from A to $B = n^m$.
- (b) the number of one-one functions from A to B

$$= \begin{cases} "P_{m'} \text{if } n \ge m \\ 0, \text{ if } n < m. \end{cases}$$

(c) the number of onto functions from A to B

$$= \begin{cases} \sum_{r=1}^{n} (-1)^{n-r} {}^{n}C_{r} r^{m}, & \text{if } m \geq n \\ 0, & \text{if } m < n. \end{cases}$$

- If n = 2 and $m \ge 2$, then the number of onto functions from A to $B = 2^m 2$.
- If n = 3 and $m \ge 3$, then the number of onto function from A to B $= 3^m 3 (2^m 1)$.
- (d) the number of one onto functions i.e. bijections from A to B

$$= \begin{cases} !m, & \text{if } m = n \\ 0, & \text{if } m \neq n. \end{cases}$$

6. Identity function. Let X be any (non-empty) set, then the function $f: X \to X$ defined by

f(x) = x for $x \in X$ is called the identity function on X. It is denoted by i or I.

7. Constant function. Let X, Y be two (non-empty) sets, then the function $f: X \to Y$ defined by

f(x) = y for $x \in X$ and for a fixed $y \in Y$ is called a constant function.

8. Equal functions

Two function f and g are called equal, written as f = g, iff

- (i) domain of f = domain of g and
- (ii) f(x) = g(x) for al x in domain of f (or g).

Otherwise, the functions are called unequal and we write as $f \neq g$.

9. Zero function

Let R be the set of all real numbers, then the function $f_0: R \to R$ defined by $f_0(x) = 0$ for all $x \in R$ is called the zero function on R.

1.5 Composition of real function

Let f, g be two real functions and let D = $\{x : x \in D_f, f(x) \in D_g\} \neq \emptyset$, then the composite of f and g, denoted by gof, is the function defined by

$$(gof)(x) = g(f(x))$$
 with domain D.

In particular, if $R_f \subset D_g$, then $D_{gof} = D_f$.

1.6 Some properties of composition of functions

The composition of functiosn is associative i.e. if

 $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$ are functions, then ho (gof) = (hog) of

- 2. Let $f: A \rightarrow B$, $g: B \rightarrow C$ be two functions.
 - (i) If f, g are both one-one, then gof is also one-one.
 - (ii) If f, g are both onto, then gof is also onto.
- 3. If $f: A \rightarrow B$ is a function and I_A , I_B are identity functions on A, B respectively, then
 - (i) I_{B} of = f (ii) of I_{Δ} = f.

1.7 Invertible functions

Let $f: X \to Y$ be one-one onto function and if f(x) = y where $x \in X$, $y \in Y$, then $f^{-1}: Y \to X$ defined by $f^{-1}(y) = x$ is called an inverse function of f.

Clearly, we have

- (i) domain of f^{-1} = range of f.
- (ii) range of f^{-1} = domain of f.
- (iii) $f^{-1}(y) = x \text{ iff } f(x) = y \text{ where } x \in X, y \in Y.$

From above it follows that if the function $f: X \to Y$ is one-one onto, then we can define a function $g: Y \to X$ by g(y) = x if and only if y = f(x).

We note that the composite function gof, fog exist and gof = I_v , fog = I_v . Thus:

A function $f: X \to Y$ is called invertible if there exists function $g: Y \to X$ such that $gof = I_X$ and $fog = I_Y$. The function g is called inverse of f and is denoted by f^{-1} .

In particulr, if f: $X \to X$ is a function and fof = I,, then f is invertible and $f^{-1} = f$.

1.8 Some properties of invertible functions

- 1. Inverse of a bijective function is unique.
- 2. The inverse of a bijective function f is also bijective and $(f^{-1})^{-1} = f$.
- 3. If $f: A \rightarrow B$ is bijective, then
 - (i) f^{-1} of = I_A
- (ii) $fof^{-1} = I_B$.
- 4. If $f: A \to B$ and $g: B \to C$ are both bijectives, then $gof: A \to C$ is also bijective and $(gof)^{-1} = f^{-1} og^{-1}$.
- 5. Let A be a non-empty set and $f: A \rightarrow A$, $g: A \rightarrow A$ be two functions such that $gof = I_A = fog$, then f and g are both bijectives and $g = f^{-1}$.

1.9 Binary operations

A binary opertion (or composition) '*' on a (non-empty) set A is a function $*: A \times A \rightarrow A$.

We denote * (a, b) by a * b for every ordered pair (a, b) \in A \times A.

In other words, a binary operation (or composition) on a (non-empty set) A is a rule that associates with every ordered pair of elements a, b (distinct or equal) of A, some unique element a * b of A.

1.10 Types of operations

Let * be a binary operation of a (non-empty) set A, then

- (i) the operation is called commutative or abelian if and only if a * b = b * a for all $a, b \in A$.
- (ii) the operation is called associative if and only if (a * b) * c = a * (b * c) for all a, b, $c \in A$.
- (iii) an element $e \in A$, if it exists, is called identity element of the operation if and only if e * a = a = a * e for all $a \in A$.
- (iv) If $e \in A$ is identity element of the operation, then an element $a \in A$ s called invertible (or inversible) if and only if there exists an element $b \in A$ such that a * b = e = b * a. Element $b \in A$ is called inverse of a and is denoted by a^{-1}

Identity element, if it exists, is unique.

Inverse of an element, if it exists, is unique.

Operation table

Let A be a finite non-empty set and '*' be an operation on A, then the operation (or composition) table is a square array indicating all possible products.

Entry in the ith row and jth column = (ith entry on the left) * (jth entry at the top).

If A is (non-empty) finite set containing n elements, then the number of binary operations on $A = n^{n^2}$.

SOLVED PROBLEMS

- Q.1 Show that the relation R in the set A of points in a plane given by $R = \{(P, Q) : \text{distance of the point } P \text{ from the origin is same as the distance of the point } Q \text{ from the origin} \text{ is an equivalence relation.}$ Further, show that the set of all points related to a point $P \neq (0, 0)$ is the circle passing through P with origin as centre.
- **Sol.** Let O be the origin.

 $R = \{(P, Q) : |OP| = |OQ|, \text{ where O is the origin }\}$

Since |OP| = |OP|,

therefore, $(P, P) \in R \ \forall \ P \in A$.

:. R is reflexive.

Also $(P, Q) \in R$

 \Rightarrow | OP | = | OQ |

⇒ | OQ | = | OP |

 \Rightarrow (Q, P) \in R

⇒ R is symmetric.

Next let $(P, Q) \in R$ and $(Q, T) \in R$

 \Rightarrow | OP | = | OQ |

and | OQ | = | OT |

⇒ | OP | = OT |

 \Rightarrow (P, T) \in R

:. R is transitive.

Hence R is an equivalence relation.

Set of points related to P ≠ O

 $= \{Q \in A : (Q, P) \in R\}$

 $= \{Q \in A : |OQ| = |OP|\}$

= {Q ∈ A : Q lies on a circle through

P with centre O).

Q.2 Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related ?

Sol. Here, $(T_1, T_2) \in R$ iff T_1 is similar to T_2 .

As every triangle is similar to itself, therefore,

 $(T, T) \in R \ \forall \ T \in A$

 \Rightarrow R is reflexive.

Again $(T_1, T_2) \in R$

 \Rightarrow T₁ is similar to T₂

 \Rightarrow T₂ is similar to T₂

 \Rightarrow $(T_2, T_1) \in R$

∴ R is symmetric.

Next, let $(T_1, T_2) \in R$ and also $(T_2, T_3) \in R$

 \Rightarrow T₁ is similar to T₂ and T₂ is similar to T₃

⇒ T₁ is similar to T₃

 $(T_1, T_3) \in R$.

.. R is transitive.

Hence, R is an equivalence relation.

As $\frac{6}{3} = \frac{8}{4} = \frac{10}{5}$, Therefore, the triangles T₁ and T₃

are similar, i.e. T_1 is related to T_3 and T_3 is related to T_1 , i.e., $(T_1, T_3) \in R$.

- Q.3 Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
- **Sol.** Since P and P have the same number of sides, therefore, $(P, P) \in R \ \forall \ P \in A$.

.. R is reflexive.

Let $(P_1, P_2) \in R$

 \Rightarrow P₁ and P₂ have the same number of sides

 \Rightarrow P₂ and P₄ have the same number of sides

 \Rightarrow $(P_2, P_1) \in R$

∴ R is symmetric.

Let $(P_1, P_2) \in R$ and $(P_2, P_3) \in R$.

P₁ and P₂ have the same number of sides and also, P2, P3 have the same number of sides

- P₁ and P₃ have the same number of sides
- $(P_1, P_2) \in R$ \Rightarrow
- R is transitive. \Rightarrow

Hence R is an equivalence relation.

Here T is a triangle, therefore, $P \in A$ is related to T iff P and T have the same number of sides, i.e. $(P, T) \in R$ iff P and T have equal number of sides

or
$$(P, T) \in R$$
 iff P is a triangle.

Required set of all elements which are related to T is the set of all triangles in A.

Q.4 Let $f: N \rightarrow N$ be defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if n is odd} \\ \frac{n}{2}, & \text{if n is even} \end{cases} \text{ for all } n \in \mathbb{N}.$$

State whether the function f is bijective, Justify your

Sol. Given
$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

We note that

$$f(1) = \frac{1+1}{2} = 1$$

$$f(2) = \frac{2}{2} = 1$$

$$f(3) = \frac{3+1}{2} = 2$$

and
$$f(4) = \frac{4}{2} = 2$$

In general
$$f(2m-1) = \frac{(2m-1)+1}{2} = m$$

and
$$f(2m) = \frac{2m}{2} = m$$
 $\Rightarrow f(2m - 1) = f(2m)$

where m is any +ve integer.

f is not one-one.

However, f is onto as $R_f = N$.

 $(:: For any n \in N, there is 2 n \in N)$

such that
$$f(2 n) = \frac{2n}{2} = n$$

So, f is onto but not one-one. Hence, f is not a bijection.

Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the **Q.5** function $f : A \rightarrow B$ defined by f(x) $= \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your

Let $x_1, x_2 \in A = R - \{3\}$ be such that Sol.

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

$$\Rightarrow (x_1 - 2) (x_2 - 3) = (x_2 - 2) (x_1 - 3)$$

$$\Rightarrow$$
 $x_1 x_2 - 2 x_2 - 3 x_1 + 6$

$$= x_1 x_2 - 2 x_1 - 3 x_2 + 6$$

$$\Rightarrow$$
 $X_2 = X_1$

Let
$$y \in B = R - \{1\}$$
, then $f(x) = y$

if
$$\frac{x-2}{x-3} = y, x \neq 3$$

i.e., if
$$x-2 = yx - 3y$$

i.e., if
$$x - xy = 2 - 3y$$

i.e., if
$$x(1-y) = 2-3y$$

i.e., if
$$x = \frac{2 - 3y}{1 - y} \in A$$

Note that
$$\frac{2-3y}{1-y} = \frac{3-3y-1}{1-y}$$

$$=\frac{3(1-y)}{1-y}-\frac{1}{1-y}=3-\frac{1}{1-y}\neq 3$$

Thus, corresponding to each $y \in B$, there exists

$$\frac{2-3y}{1-y} \in A \text{ such that } f\left(\frac{2-3y}{1-y}\right) = y.$$

Hence, f is onto.

- Q.6 Let: $R \to R$ be defined as $f(x) = x^4$. Choose the correct answer.
 - (A) f is one-one onto
 - (B) f is many-one onto
 - (C) f is one-one but not onto
 - (D) f is neither one-one nor onto.
- Sol. (D)

Given $f(x) = x^4$

therefore,

$$f(-x) = (-x)^4 = x^4 = f(x)$$

 \Rightarrow

$$f(-x) = f(x) \ \forall \ x \in R$$

:. f is not one-one.

Also, $x^4 \ge 0 \ \forall \ x \in R$, therefore, $R_f = [0, \infty) \ne R$.

Hence, f is not onto.

Thus, f is neither one-one nor onto.

So, (D) is the correct alternative.

Q.7 Find gof and fog, if

(i)
$$f(x) = |x|$$
 and $g(x) = |5x - 2|$

(ii)
$$f(x) = 8x^3 \text{ and } g(x) = x^3$$

Sol. Here, f(x) = |x|, g(x) = 5x - 2|

$$\therefore \qquad \mathsf{D}_{\mathsf{f}} = \mathsf{D}_{\mathsf{q}} = \mathsf{R} \text{ and } \mathsf{R}_{\mathsf{f}} = \mathsf{R}_{\mathsf{q}} = [0, \infty).$$

To find gof:

As $R_f \subset D_g$, therefore, $(:[0, \infty) \subset R)$

gof is defined and $D_{qof} = D_f = R$.

Also. for all $x \in D_{qof} = R$,

$$(gof)(x) = g(f(x)) = g(|x|) = |5|x|-2|$$

To find fog:

As $R_a \subset D_f$, therefore,

fog is defined and $D_{fog} = D_{g} = R$.

$$(:: [0, \infty) \subset R)$$

Also, for all $x \in D_{fog} = R$, (fog)(x) = f(g(x))

$$= f(|5x-2|) = ||5x-2||$$

Note that (fog) $(x) = g(x), \forall x \in R$

$$\Rightarrow$$
 fog = g.

(ii) Here, $f(x) = 8 x^3$, $g(x) = x^{1/3}$

 $\Rightarrow \qquad \qquad \mathsf{D_f} = \mathsf{D_g} = \mathsf{R}$

and $R_f = R_a^{\circ} = R$.

To find gof:

As $R_f = D_g$, therefore, gof is defined

and $D_{qof} = D_f = R$.

Also, for all $x \in R$. (gof) (x) = g(f(x))

=
$$g(8 x^3) = (8 x^3)^{1/3} = (2^3 x^3)^{1/3} = 2 x$$
.

To find fog:

As $R_a = D_f$, therefore, fog is defined

and $D_{fog} = D_g = R$.

Also, for all $x \in R$. (fog) (x) = f(g(x))= $f(x^{1/3}) = 8(x^{1/3})^3 = 8x$.

Q.8 If $f(x) = \frac{(4x+3)}{(6x-4)}$, $x \neq \frac{2}{3}$, show that fof(x) = x, for all

 $x \neq \frac{2}{3}$. What is the inverse of f?

Sol. Here, $f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$

$$D_f = R - \left\{ \frac{2}{3} \right\}$$

To find R_f , let $y=f(x)=\frac{4x+3}{6x-4}$

6xy - 4y = 4x + 3

x(6 y - 4) = 4y + 3

 $\Rightarrow x = \frac{4y+3}{6y-4} \qquad \dots (1)$

But $x \in R$, therefore, $6y - 4 \neq 0 \implies y \neq 2/3$.

 $\therefore \qquad \mathsf{R}_{\mathsf{f}} = \mathsf{R} - \left\{ \frac{2}{3} \right\}.$

Since $R_r = D_r$, therefore, fof is meaningful

and $D_{fof} = D_f$

Also, for all $x \neq \frac{2}{3}$, (fof) (x) = f(f(x))

$$= \frac{4f(x)+3}{6f(x)-4} = \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4}$$

$$= \frac{16x + 12 + 18x - 12}{24x + 18 - 24x + 16} = x.$$

As
$$(fof)(x) = x = I(x)$$

....(2)

where I is the identity mapping of $R - \left\{\frac{2}{3}\right\}$.

therefore, $f^{-1} = f$.

Q.9 Consider $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^-1 of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

Sol. Let
$$x_1, x_2 \in D_f = R_+ = [0, \infty)$$
 be such that

$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^2 + 4 = x_2^2 + 4$$

$$\Rightarrow x_1^2 = x_2^2$$

$$\Rightarrow |x_1| = |x_2|$$

$$\Rightarrow x_1 = x_2 \ (\because both \ x_1, \ x_2 \ge 0)$$

∴ f is one-one.

Let
$$y \in R_f$$
, then $y = f(x)$, $x \in D_f = R_+$

$$\Rightarrow$$
 y = x² + 4

$$\Rightarrow \qquad \qquad x = \sqrt{y - 4} \qquad \qquad (\because x \ge 0)$$

As x is real, therefore, $y - 4 \ge 0$

$$\Rightarrow \qquad \qquad y \ge 4 \qquad \Rightarrow \qquad \mathsf{R}_{\mathsf{f}} = [4, \infty)$$

$$\therefore$$
 R_f = co-domain \Rightarrow f is onto.

Also, corresponding to every $y \in R_t$ there exists $\sqrt{y-4}$

$$\in D_f$$
 such that $f(\sqrt{y-4}) = y$.

:. f is both one-one and onto and hence invertible.

To find
$$f^{-1}$$
: let $y = f(x) \Rightarrow y = x^2 + 4$

$$\Rightarrow \qquad x^2 = y - 4 \qquad \Rightarrow \quad x = \sqrt{y - 4} \quad (\because \quad x \ge 0)$$

$$\Rightarrow \qquad f^{-1}(y) = \sqrt{y-4}$$

or
$$f^{-1}(x) = \sqrt{x-4}$$

for all $x \in D_{f-1} = R_f = [4, \infty)$.

Q.10 Consider
$$f: R_+ \rightarrow [-5, \infty)$$
 given by

$$f(x) = 9x^2 + 6x - 5$$
.

Show that f is invertible with

$$f^{-1}(y) = \left(\frac{\left(\sqrt{y+6}\right)-1}{3}\right).$$

Sol. Given
$$D_f = R_+ = [0, \infty)$$

Let $x_1, x_2 \in D_f$ be such that

$$f(x_1) = (x_2)$$

$$\Rightarrow \qquad 9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$$

$$\Rightarrow \qquad 9(x_1^2 - x_2^2) + 6(x_1 - x_2) = 0$$

$$\Rightarrow$$
 9(x₁ - x₂) (x₁ + x₂) + 6 (x₁ - x₂) = 0

$$\Rightarrow (x_1 - x_2) \{9 (x_1 + x_2) + 6\} = 0$$

$$\Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

$$(: x_1, x_2 \ge 0, : 9(x_1 + x_2) + 6 \ne 0 \text{ as } x_1, x_2 \ge 0)$$

Let
$$y \in R_f$$
, then $y = f(x)$, $x \in D_f$

$$\Rightarrow y = 9 x^{2} + 6x - 5, x \in D_{r}$$

$$\Rightarrow 9 x^{2} + 5x - (5 + y) = 0$$

$$\Rightarrow x = \frac{-6 \pm \sqrt{36 + 36(5 + y)}}{18}$$

$$= \frac{-6 \pm \sqrt{36} \sqrt{1 + 5 + y}}{18}$$

$$= \frac{-6 \pm 6\sqrt{6+y}}{18} = \frac{-1 \pm \sqrt{y+6}}{3}$$

As $x \ge 0$, therefore, $x = \frac{-1 - \sqrt{y + 6}}{3}$ is not possible.

$$\therefore \qquad x = \frac{-1 + \sqrt{y + 6}}{3}$$

....(1)

Also,
$$x \ge 0$$
 $\Rightarrow \frac{-1 + \sqrt{y+6}}{3} \ge 0$

$$\Rightarrow \qquad \sqrt{y+6} \ge 1 \qquad \Rightarrow \qquad y \ge -5$$

$$\therefore$$
 R_f = [-5, ∞) = co-domain

$$\Rightarrow$$
 f is onto.

Thus, f is both one-one onto and hence invertible.

To find
$$f^{-1}$$
. Let $y = f(x)$

$$\Rightarrow$$
 $y = 9x^2 + 6x - 5$

$$\Rightarrow x = \frac{-1 + \sqrt{y+6}}{3} \Rightarrow f^{-1}(y) = \frac{-1 + \sqrt{y+6}}{3}$$

or
$$f^{-1}(x) = \frac{-1 + \sqrt{x+6}}{3}$$
,

$$x \in D_{f^{-1}} = R_f = [-5, \infty).$$

- Q.11 Let $f: X \to Y$ be an invertible function. Show that f has unique inverse.
- **Sol.** Supppose that g_1 and g_2 are two inverses of f, then for all $y \in Y$,

$$(fog_1)(y) = f(g_1(y)) = y = I_Y(y)$$

and
$$(fog_2)(y) = f(g_2(y)) = y = I_y(y)$$

$$\Rightarrow$$
 (fog₁) (y) = (fog₂) (y) for all y \in Y

$$\Rightarrow$$
 f(g₁(y)) = f(g₂(y)) for all y \in Y

$$\Rightarrow$$
 $g_1(y) = g_2(y)$ (: f is one-one)

$$\Rightarrow$$
 $g_1 = g_2$

: inverse of f is unique.

- Q.12 Consider $f : [1, 2, 3] \rightarrow [a, b, c]$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$.
- **Sol.** Given f(1) = a, f(2) = b, f(3) = c,

i.e.,
$$f = \{(1, a), (2, b), (3, c)\}.$$

$$\Rightarrow$$
 R_c = co-domain and also f is 1 – 1

$$\Rightarrow$$
 f is invertible and 1 = f⁻¹ (a),

$$2 = f^{-1}$$
 (b), $3 = f^{-1}$ (c)

$$\Rightarrow$$
 f⁻¹ = {a, b, c} \rightarrow {1, 2, 3} is both

one-one and onto.

$$\Rightarrow$$
 $(f^{-1})^{-1}$ exists

and
$$(f^{-1})^{-1} = \{(1, a), (2, b), (3, c)\}$$

$$(: f^{-1} = \{(a, 1), (b, 2), (c, 3)\})$$

- \Rightarrow $(f^{-1})^{-1} = f$.
- Q.13 Let $f: X \to Y$ be in invertible function. Show that the inverse of f^{-1} is f, i.e., $(f^{-1})^{-1} = f$.
- **Sol.** $f: X \rightarrow Y$ is invertible

 \Rightarrow f is one-one and onto and f⁻¹: Y \rightarrow X is

defined as $f^{-1}(y) = (x)$

iff
$$y = f(x) \forall x \in X, y \in Y$$
.

Let $y_1, y_2 \in Y$ be such that

$$f^{-1}(y_1) = f^{-1}(y_2)$$

$$\Rightarrow$$
 f(f⁻¹ (y₁)) = f(f⁻¹ (y₂)) = (fof⁻¹) (y₁)

$$\Rightarrow$$
 = (fof⁻¹) (y₂)

$$\Rightarrow$$
 $I_{Y}(y_{1}) = I_{Y}(y_{2})$

$$\Rightarrow$$
 $y_1 = y_2$

 \Rightarrow f⁻¹ is one-one.

Also for each $x \in X$, there exists $y = f(x) \in Y$ such that

$$f^{-1}(y) = x$$
 $(\because y = f(x))$

Thus, f⁻¹ is both one-one and onto and hence invertible.

let
$$g = (f^{-1})^{-1}$$

then
$$gof^{-1} = I_v$$
 and $f^{-1} og = I_v$

For all
$$x \in X$$
, $I_{x}(x) = x$

$$\Rightarrow \qquad (f^{-1} \circ g)(x) = x$$

$$\Rightarrow$$
 f⁻¹ (g (x)) = x

$$\Rightarrow f\{f^{-1}(g(x))\} = f(x)$$

$$\Rightarrow$$
 $(fof^{-1})(g(x)) = f(x)$

$$\Rightarrow g(x) = f(x) \qquad (\because fof^{-1} = I_{\nu})$$

$$g = f$$

$$\Rightarrow \qquad (f^{-1})^{-1} = f.$$

- Q.14 Let $f: W \to W$ be defined as f(n) = n 1, if n is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
- **Sol.** Let m, n be any two distinct elements of W. We shall show that $f(m) \neq f(n)$.

Case (i). When both m and n are even, then

$$f(m) = m + 1, f(n) = n + 1$$

and
$$m \neq n \Rightarrow m + 1 \neq n + 1$$

$$\Rightarrow$$
 f(m) \neq f(n).

Case (ii). When both m and n are odd, then

$$f(m) = m - 1$$
, $f(n) = n - 1$

and
$$m \neq n \Rightarrow m-1 \neq n-1$$

$$\Rightarrow$$
 f(m) \neq f(n).

Case (iii). When m is odd and n is even, then f(m) = m - 1 is even and f(n) = n + 1 is odd so that $f(m) \neq f(n)$ in this case also. Similarly, if m is even and n is odd,

$$f(m) \neq f(n)$$
.

So, in all cases $m \neq n \implies f(m) \neq f(n)$.

Hence f is a one-one function.

Further, we show that f is onto.

If $n \in W$ is any element, then

$$f(n-1) = n$$
 if n is odd

$$(:: n-1 \text{ is even})$$

$$f(n + 1) = n \text{ if } n \text{ is even}$$
 (: $n + 1 \text{ is odd}$)

So, every element of W is the f-image of some element in W. Hence f is onto.

Thus f is both one-one and onto, i.e., f is a one-one correspondence.

Consequently, f is invertible. We have seen above that

$$f(n-1) = n \text{ if } n \text{ is odd}$$

$$f(n + 1) = n$$
 if n is even

$$\Rightarrow$$

$$n - 1 = f^{-1}(n)$$
 if n is odd

Q.15 Show that the function $f: R \rightarrow \{x \in R: -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one one and onto function.

Sol.

Given
$$f(x) = \frac{x}{1+|x|} = \begin{cases} \frac{x}{1+x}, & \text{if } x \ge 0 \\ \frac{x}{1-x}, & \text{if } x < 0 \end{cases}$$

Clearly, $D_i = R$ as $1 + |x| \neq 0 \forall x \in R$.

T.P. f is
$$1-1$$
: Let $x_1, x_2 \in D_f = R$ such

that $x_1 \neq x_2$. For cases arise :

Case I. If $x_1 \ge 0$ and $x_2 < 0$,

$$f(x_1) = \frac{x_1}{1 + x_4} \ge 0$$

$$f(x_2) = \frac{x_2}{1 + x_2} < 0$$

$$\rightarrow$$

$$f(x_1) \neq f(x_2)$$

Case II. If $x_1 < 0$ and $x_2 \ge 0$,

then as in case I,

$$f(x_1) < 0$$
 and $f(x_2) \ge 0$

$$\Rightarrow$$
 $f(x_1) \neq f(x_2)$.

Case III. If $x_1 \ge 0$ and $x_2 \ge 0$,

then

$$X_1 \neq Y$$

$$\Rightarrow$$
 1 + $x_1 \neq 1 + x_2$

$$\Rightarrow \frac{1}{1+x_1} \neq \frac{1}{1+x_2} \Rightarrow \frac{-1}{1+x_1} \neq \frac{-1}{1+x_2}$$

$$\Rightarrow \qquad 1 - \frac{1}{1 + x_1} \neq 1 - \frac{1}{1 + x_2} \Rightarrow \frac{x_1}{1 + x_1} \neq \frac{x_2}{1 + x_2}$$

$$\Rightarrow$$
 $f(x_1) \neq f(x_2)$.

Q.16 Given a non empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify your answer.

Since $A \subset A \ \forall \ A \in P(X)$, therefore, R is reflexive. Sol.

Also, for A, B, $C \in P(X)$, A R B and B R C

$$\Rightarrow$$
 A \subset B and B \subset C

$$\Rightarrow$$
 A \subset C \Rightarrow A R C

However, R is not symmetric as A ⊂ B need not imply $B \subset A$.

So, ARB does not imply BRA.

Hence R is not an equivalence relation.

Q.17 Given a non-empty set X, consider the binary operation * : $P(X) \times P(X) \rightarrow P(X)$ given by $A * B = A \cup B \forall A, B in P(X), where P(X) is the$ power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

Sol. Let $E \in P(X)$ be an identity element, then

$$A * E = E * A = A \text{ for all } A \in P(X)$$

$$\Rightarrow$$
 A \cap E = E \cap A = A for all A \in P (X)

$$\Rightarrow$$
 $X \cap E = X \text{ as } X \in P(X)$

Also
$$E \subset X$$
 as $E \in P(X)$

Thus, X is the identity element.

let $A \in P(X)$ be invertible, then there exists $B \in P$ (X) such that A * B = B * A = X, then identity element.

$$\Rightarrow$$
 A \cap B = B \cap A = X

$$\Rightarrow$$
 X \subset A and also X \subset B

Also,
$$A, B \subset X \text{ as } A, B \in P(X)$$

$$X^{-1} = B = X$$
.

- Q.18 Find the number of all onto functions from the set {1, 2, 3,, n} to itself.
- **Sol.** Let $A = \{1, 2, 3, \dots, n\}$.

If $f: A \rightarrow A$ is an onto function, then range of f = A.

 \Rightarrow f is one-one.

(∵ If f is not one-one then range of f will be a proper subset of A)

Thus, f is both one-one and onto

i.e., f is a one-one correspondence. Number of such functions is the same as the number of arrangements of numbers taken all at a time,

i.e., ${}^{n}P_{n} = n!$. Hence n! functions from A to A are onto

- Q.19 Consider the binary operations *: $R \times R \rightarrow R$ and o: $R \times R \rightarrow R$ defined as a * b = |a b| and a o b = a, $\forall a, b \in R$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b \in R$, a * $(b \circ c) = (a * b)$ o (a * b). Does o distribute over *? Justify your answer.
- **Sol.** For all $a, b \in R$, a * b = |a b|

$$= |-(b-a)| = |b-a| = b * a$$

 \Rightarrow a * b = b * a

⇒ '*' is commutative.

Also, for all a, b, $c \in R$,

$$(a * b) * c = |a - b| * c = ||a - b| - c|$$

and a * (b * c) = a * | b - c | = | a - | b - c |

 \Rightarrow (a * b) * c \neq a * (b * c)

(: $|| a - b | - c | \neq |a - |b - c||$ in general, as an

example ||3-5|-7| = 5 but |3-|5-7|| = 1)

: '*' is not associative.

Again aob = a and boa = b

⇒ aob ≠ boa

⇒ o is not commutative.

However, for all $a, b, c \in R$,

(aob) oc = aoc = a

and ao (boc) = aob = a

 \Rightarrow (aob) oc = ao (boc)

⇒ 'o' is associative.

Further, we find that for all $a, b, c \in R$,

and
$$(a * b) o (a * c) = |a - b| o |a - c|$$

$$\Rightarrow$$
 a * (boc) = (a * b) o (a * c)

Again, ao (b
$$*$$
 c) = ao | b - c | = a

$$\Rightarrow$$
 ao (b * c) \neq (aob) * (aoc)

(: $\mathbf{a} \neq 0$ in general)

.: 'o' is not distributive over '*'.

Q.20 Given a non-empty set X, let *: $P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B = (A - B) \cup (B - A)$,

 \forall A, B \in P(X). Show that the empty set f is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$.

Sol. Let E be an identity element, then

$$A * E = E * A = A \text{ for all } A \in P(X)$$

$$\Rightarrow$$
 $(A - E) \cup (E - A) = A \text{ for all } A \in P(X)$

Taking $A = \phi$, we get

$$(\phi - E) \cup (E - \phi) = \phi$$

$$\phi \cup \mathsf{E} = \phi \qquad \Rightarrow \qquad \mathsf{E} = \phi$$

Observe that $A * \phi = \phi * A = (A - \phi) \cup (\phi - A)$

 $= A \text{ for all } A \in P(X).$

So, ϕ is the identity element.

Let $A \in P(X)$ be invertible, then there is $B \in P(X)$ such that $A \star B = B \star A = \phi$.

$$\Rightarrow$$
 $(A-B) \cup (B-A) = \phi$

$$\Rightarrow$$
 A – B = ϕ and also B – A = ϕ

$$\Rightarrow$$
 A \subset B and B \subset A

Thus for all $A \in P(X)$, $A * A = \phi$.

- \Rightarrow A is invertible and A⁻¹ = A.
- Q.1 In the set N of all natural numbers, let a relation R be defined by

$$R = \{(x, y) : x \in N, y \in N, x - y \text{ is divisible by } \}$$

5}

prove that R is an equivalence relation.

Q.2 Let 'm' be a given positive integer. Prove that the

EXERCISE - I

UNSOLVED PROBLEMS

relation, 'congruence modulo m' on the set z of all integers defined by $a \equiv b \pmod{m} \Leftrightarrow (a-b)$ is divisible by m is an equivalence relation.

Q.3 Prove that the relation R in the set of integers Z defined by

 $xRy \Leftrightarrow x^y = y^x \ \forall \ x, y \in Z$ is an equivalence relation.

- Q.4 Let N be the set of all natural numbers and R be the relation on N × N defined by
 - (i) $(a, b) R (c, d) \Leftrightarrow ad = bc$
 - (ii) $(a, b) R (c, d) \Leftrightarrow ad (b + c) = bc (a + d)$

prove that R. is an equivalence relation in each case.

- **Q.5** If $f: X \to Y$ and A, B $\subseteq X$, then prove that
 - (i) $f(A \cup B) = f(A) \cup f(B)$
 - (i) $f(A \cap B) \subseteq f(A) \cap f(B)$
- **Q.6** If $f: X \to Y$ and A, B $\subseteq Y$, then prove that
 - (i) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
 - (ii) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
 - (iii) $f^{-1}(A-B) = f^{-1}(A) f^{-1}(B)$
- Q.7 Prove that only one-one onto function has inverse function.
- Q.8 Prove that the product of any function with the identity function is the function itself.
- **Q.9** Prove that the product of any invertible function f with its inverse f⁻¹ is an identity function.
- Q.10 Prove that composite of functions is associative.
- Q.11 Let $f: A \to B$ and $g: B \to A$ such that gof is an identity function on A and fog is an identity function on B. Then, $g = f^{-1}$
- Q.12 Let $f: A \to B$ and $g: B \to C$ be one-one onto functions. Then gof is also one-one onto and $(gof)^{-1} = f^{-1}og^{-1}$
- Q.13 Let $f: N \rightarrow N$ be defined by

$$f(x) = \begin{cases} n+1, & \text{if n is odd} \\ n-1, & \text{if n is even} \end{cases}$$

show that f is a bijection.

Q.14 Show that the function

$$f: R - \{3\} \rightarrow R - \{1\}$$
 given by

$$f(x) = \frac{x-2}{x-3}$$
 is a bijection.

- **Q.15** (i) If $f: A \to B$ and $g: B \to C$ are one-one functions. Show that gof is a one-one function.
 - (ii) If $f: A \to B$ and $g: B \to C$ are onto functions. Show that gof is an onto function.
- Q.16 Prove that the composition of two bijections is a bijection i.e. if f and g are two bijections, then gof is also a bijections.
- **Q.17** If $f: R \to (-1, 1)$ defined by $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$ is invertible find f^{-1} .
- Q.18 Let S = N × N and '*' be an operation on S defined by (a, b) * (c, d) = (ac, bd) for all a, b, c, d ∈ N. Determine whether '*' is a binary operation on S. If yes, check the commutativity and associativity.
- Q.19 Let Q be the set of all rational numbers, define an operation on $^*Q \{-1\}$ by a $^*b = a + b + ab$, show that
 - (i) '*' is a binary operation on $Q \{-1\}$
 - (ii) '*' is commutative
 - (iii) '*' is associative
 - (iv) zero is the identity element in $Q \{-1\}$ for *
 - (v) $a^{-1} = \left(\frac{-a}{1+a}\right) \text{. where } a \in Q \{-1\}$
- Q.20 Let $S = R_0 \times R$, where Ro denote the set of all non-zero real numbers. A binary operation '*' is defined on s as follows. (a, b) * (c, d) = (ac, bc + d) for all (a, b) (c, d) $\in R_0 \times R$
 - (i) Find the identity element in S.
 - (ii) Find the invertible element in S.
- Q1. Show that the relation R defined by $R = \{(a, b) : a b \text{ is divisible by 3}; a, b \in N \text{ is an equivalence relation.}$
- Q2. Let T be the set of all triangles in a plane with R as a relation in T given by $R = \{(T_1, T_2) : T_1 \cong T_2\}$. Show that R is an equivalence relation.

Exercise – II

BOARD PROBLEMS

- Show that the relation R defined by (a, b) R(c, d) \Rightarrow a + d = b + c on the set N × N is an equivalence relation. Q3.
- (i) Is the binary operation \star , defined on the set N, given by a \star b = $\frac{a+b}{2}$ for all a, b \in Q, commutative ? Q4. (ii) Is the above binary operation * associative?
- Q5. Let \star be a binary operation defined by a \star b = 3a + 4b – 2. Find 4 \star 5.
- If f(x) is an invertible function, find the inverse of $f(x) = \frac{3x-2}{5}$. Q6.
- Let * be a binary operation defined by a * b = 2a + b 3. Find 3 * 4. Q7.
- If f(x) = x + 7 and g(x) = x 7, find (fog) (7). Q8.
- $\text{Let } f: N \to N \text{ be defined by } f(n) = \begin{cases} \frac{n+1}{2}\,, & \text{if } n \text{ is odd} \\ \frac{n}{2}\,, & \text{if } n \text{ is even} \end{cases}$ Find whether the function f is bilded. Q9.
- Let * be a binary operation on N given by a * b = HCF (a, b), a, b \in N. Write the value of 22 * 4. Q10.
- Show that the relation S defined on the set N × N by Q11. $(a, b) S (c, d) \Rightarrow a + d = b + c$ is an equivalence relation.
- If f: R \rightarrow R be defined by $f(x) = (3 x^3)^{1/3}$, then find fof(x). Q12.
- A binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ is defined as : $a * b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b > 6 \end{cases}$ Q13.

Show that zero is the identity for this operation and each element 'a' of the set is invertible with 6 – a, being the inverse

- Q14.
- Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $gof = fog = I_R$. Show that $f: N \to N$, given by $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x 1, & \text{if } x \text{ is even} \end{cases}$ is both one one and onto : Q15.

Consider the binary operations *: $R \times R \rightarrow R$ and o: $R \times R \rightarrow R$ defined as a * b = | a - b | and aob = a for all a, b ∈ R. Show that '*' is commutative but not associative, 'o' is associative but not commutative

Q.16 Consider $f: \mathbb{R}_+ \to [4, \infty]$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R₁ is the set of all non-negative real numbers.

EXERICISE – 1 (UNSOLVED PROBLEMS)

Answers

7.
$$\frac{1}{2}\log_{10}\left(\frac{1+x}{1-x}\right)$$
 20. (i) (1, 0) (ii) $\left(\frac{1}{a}, \frac{-b}{a}\right)$

EXERICISE - 2 (BOARD PROBLEMS)

- **4.** (i) yes (ii) yes **5.** 30 **6.** $f^{-1}(x) = \frac{5x+2}{3}$ **7.** 7 **8.** 7 **9.** not bijective 2
- **14.** $g(x) = \frac{x-7}{10}$ 12.