
INTRODUCTION OF JAVASCRIPT

Introduction of JavaScript

JavaScript is a cross-platform, object-oriented scripting language used to make webpages
interactive (e.g., having complex animations, clickable buttons, popup menus, etc.). There are
also more advanced server side versions of JavaScript such as Node.js, which allow you to add
more functionality to a website than downloading files (such as realtime collaboration between
multiple computers). Inside a host environment (for example, a web browser), JavaScript can be
connected to the objects of its environment to provide programmatic control over them.

JavaScript contains a standard library of objects, such as Array, Date, and Math, and a core set of
language elements such as operators, control structures, and statements. Core JavaScript can be
extended for a variety of purposes by supplementing it with additional objects; for example:

• Client-side JavaScript extends the core language by supplying objects to control a browser
and its Document Object Model (DOM). For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events such as mouse
clicks, form input, and page navigation.

• Server-side JavaScript extends the core language by supplying objects relevant to running
JavaScript on a server. For example, server-side extensions allow an application to
communicate with a database, provide continuity of information from one invocation to
another of the application, or perform file manipulations on a server.

This means that in the browser, JavaScript can change the way the webpage (DOM) looks. And,
likewise, Node.js JavaScript on the server can respond to custom requests from code written in
the browser.

JavaScript and Java

JavaScript and Java are similar in some ways but fundamentally different in some others. The
JavaScript language resembles Java but does not have Java's static typing and strong type
checking. JavaScript follows most Java expression syntax, naming conventions and basic control-
flow constructs which was the reason why it was renamed from LiveScript to JavaScript.

In contrast to Java's compile-time system of classes built by declarations, JavaScript supports a
runtime system based on a small number of data types representing numeric, Boolean, and
string values. JavaScript has a prototype-based object model instead of the more common class-
based object model. The prototype-based model provides dynamic inheritance; that is, what is
inherited can vary for individual objects. JavaScript also supports functions without any special
declarative requirements. Functions can be properties of objects, executing as loosely typed
methods.

JavaScript is a very free-form language compared to Java. You do not have to declare all
variables, classes, and methods. You do not have to be concerned with whether methods are
public, private, or protected, and you do not have to implement interfaces. Variables,
parameters, and function return types are not explicitly typed.

Java is a class-based programming language designed for fast execution and type safety. Type
safety means, for instance, that you can't cast a Java integer into an object reference or access
private memory by corrupting the Java bytecode. Java's class-based model means that programs
consist exclusively of classes and their methods. Java's class inheritance and strong typing
generally require tightly coupled object hierarchies. These requirements make Java programming
more complex than JavaScript programming.

In contrast, JavaScript descends in spirit from a line of smaller, dynamically typed languages such
as HyperTalk and dBASE. These scripting languages offer programming tools to a much wider
audience because of their easier syntax, specialized built-in functionality, and minimal
requirements for object creation.

JavaScript Java
Object-oriented. No distinction
between types of objects.
Inheritance is through the
prototype mechanism, and
properties and methods can be
added to any object
dynamically.

Class-based. Objects are divided
into classes and instances with all
inheritance through the class
hierarchy. Classes and instances
cannot have properties or
methods added dynamically.

Variable data types are not
declared (dynamic typing,
loosely typed).

Variable data types must be
declared (static typing, strongly
typed).

Cannot automatically write to
hard disk.

Can automatically write to hard
disk.

For more information on the differences between JavaScript and Java, see the chapter Details of
the object model.

JavaScript and ECMAScript specification:

JavaScript is standardized at Ecma International — the European association for standardizing
information and communication systems (ECMA was formerly an acronym for the European
Computer Manufacturers Association) to deliver a standardized, international programming
language based on JavaScript. This standardized version of JavaScript, called ECMAScript,
behaves the same way in all applications that support the standard. Companies can use the open
standard language to develop their implementation of JavaScript. The ECMAScript standard is
documented in the ECMA-262 specification.

The ECMA-262 standard is also approved by the ISO (International Organization for
Standardization) as ISO-16262. You can also find the specification on the Ecma International
website. The ECMAScript specification does not describe the Document Object Model (DOM),
which is standardized by the World Wide Web Consortium (W3C) and/or WHATWG (Web
Hypertext Application Technology Working Group). The DOM defines the way in which HTML
document objects are exposed to your script. To get a better idea about the different
technologies that are used when programming with JavaScript, consult the article JavaScript
technologies overview.

JavaScript documentation versus the ECMAScript specification

The ECMAScript specification is a set of requirements for implementing ECMAScript. It is useful if
you want to implement standards-compliant language features in your ECMAScript
implementation or engine (such as SpiderMonkey in Firefox, or V8 in Chrome).

The ECMAScript document is not intended to help script programmers. Use the JavaScript
documentation for information when writing scripts.

The ECMAScript specification uses terminology and syntax that may be unfamiliar to a JavaScript
programmer. Although the description of the language may differ in ECMAScript, the language
itself remains the same. JavaScript supports all functionality outlined in the ECMAScript
specification.

The JavaScript documentation describes aspects of the language that are appropriate for a
JavaScript programmer.

Getting started with JavaScript

Getting started with JavaScript is easy: all you need is a modern Web browser. This guide
includes some JavaScript features which are only currently available in the latest versions of
Firefox, so using the most recent version of Firefox is recommended.

The Web Console tool built into Firefox is useful for experimenting with JavaScript; you can use it
in two modes: single-line input mode, and multi-line input mode.

Single-line input in the Web Console

For single-line entry, you can type JavaScript expressions in the field at the bottom of the console
log, at the >> prompt.

To enter expressions in single-line mode, type at the prompt and press Enter. To enter multi-line
expressions, press Shift + Enter after typing each line, then Enter to run all the entered lines.
The expression you type is echoed under the input prompt, followed by the result.

If your input does not appear to be complete when you press Enter, then the Console treats this
as Shift + Enter , enabling you to finish your input.
For example, if you type:

function foo() {

and then Enter, the Console does not immediately execute the input, but behaves as if you had
pressed Shift + Enter , so you can finish entering the function definition.

Multi-line input in the Web Console

The single-line input mode of the Web Console is great for quick testing of JavaScript
expressions, but although you can execute multiple lines, it's not very convenient for that. For
more complex JavaScript, you can use the multi-line input mode.

Hello world

To get started with writing JavaScript, open the Web Console in multi-line mode, and write your
first "Hello world" JavaScript code:

(function(){
 "use strict";
 /* Start of your code */

 function greetMe(yourName) {
 alert('Hello ' + yourName);
 }

 greetMe('World');
 /* End of your code */
})();

Press Cmd+Enter or Ctrl+Enter (or click the Run button) to watch it unfold in your browser!

In the following pages, this guide introduces you to the JavaScript syntax and language features,
so that you will be able to write more complex applications.

But for now, remember to always include the (function(){"use strict"; before your code, and
add })(); to the end of your code. The strict mode and IIFE articles explain what those do, but for
now they can be thought of as doing the following:

1. Prevent semantics in JavaScript that trip up beginners.
2. Prevent code snippets executed in the console from interacting with one-another (e.g.,

having something created in one console execution being used for a different console
execution).

	UINTRODUCTION OF JAVASCRIPT
	Introduction of JavaScript
	JavaScript and Java
	JavaScript and ECMAScript specification:
	JavaScript documentation versus the ECMAScript specification

	Getting started with JavaScript
	Single-line input in the Web Console
	Multi-line input in the Web Console
	Hello world

