
POLYMORPHISM 

Introduction of Polymorphism 

The word polymorphism means having many forms. Typically, polymorphism occurs when there 
is a hierarchy of classes and they are related by inheritance. 

C++ polymorphism means that a call to a member function will cause a different function to be 
executed depending on the type of object that invokes the function. 

Consider the following example where a base class has been derived by other two classes − 

#include <iostream>  

using namespace std; 

  

class Shape { 

   protected: 

      int width, height; 

       

   public: 

      Shape( int a = 0, int b = 0){ 

         width = a; 

         height = b; 

      } 

      int area() { 

         cout << "Parent class area :" <<endl; 

         return 0; 

      } 

}; 

class Rectangle: public Shape { 



   public: 

      Rectangle( int a = 0, int b = 0):Shape(a, b) { } 

       

      int area () {  

         cout << "Rectangle class area :" <<endl; 

         return (width * height);  

      } 

}; 

 

class Triangle: public Shape { 

   public: 

      Triangle( int a = 0, int b = 0):Shape(a, b) { } 

       

      int area () {  

         cout << "Triangle class area :" <<endl; 

         return (width * height / 2);  

      } 

}; 

 

// Main function for the program 

int main() { 

   Shape *shape; 

   Rectangle rec(10,7); 

   Triangle  tri(10,5); 

 



   // store the address of Rectangle 

   shape = &rec; 

    

   // call rectangle area. 

   shape->area(); 

 

   // store the address of Triangle 

   shape = &tri; 

    

   // call triangle area. 

   shape->area(); 

    

   return 0; 

} 

When the above code is compiled and executed, it produces the following result − 

Parent class area : 

Parent class area : 

The reason for the incorrect output is that the call of the function area() is being set once by the 
compiler as the version defined in the base class. This is called static resolution of the function 
call, or static linkage - the function call is fixed before the program is executed. This is also 
sometimes called early binding because the area() function is set during the compilation of the 
program. 

But now, let's make a slight modification in our program and precede the declaration of area() in 
the Shape class with the keyword virtual so that it looks like this − 

class Shape { 

protected: 



int width, height; 

 

public: 

Shape( int a = 0, int b = 0) { 

width = a; 

height = b; 

} 

virtual int area() { 

cout << "Parent class area :" <<endl; 

return 0; 

} 

}; 

After this slight modification, when the previous example code is compiled and executed, it 
produces the following result − 

Rectangle class area 

Triangle class area 

This time, the compiler looks at the contents of the pointer instead of it's type. Hence, since 
addresses of objects of tri and rec classes are stored in *shape the respective area() function is 
called. 

As you can see, each of the child classes has a separate implementation for the function area(). 
This is how polymorphism is generally used. You have different classes with a function of the 
same name, and even the same parameters, but with different implementations. 

Virtual Function 

A virtual function is a function in a base class that is declared using the keyword virtual. Defining 
in a base class a virtual function, with another version in a derived class, signals to the compiler 
that we don't want static linkage for this function. 



What we do want is the selection of the function to be called at any given point in the program 
to be based on the kind of object for which it is called. This sort of operation is referred to 
as dynamic linkage, or late binding. 

Pure Virtual Functions 

It is possible that you want to include a virtual function in a base class so that it may be 
redefined in a derived class to suit the objects of that class, but that there is no meaningful 
definition you could give for the function in the base class. 

We can change the virtual function area() in the base class to the following − 

class Shape { 

protected: 

int width, height; 

 

public: 

Shape(int a = 0, int b = 0) { 

width = a; 

height = b; 

} 

 

// pure virtual function 

virtual int area() = 0; 

}; 

The = 0 tells the compiler that the function has no body and above virtual function will be 
called pure virtual function. 


