
FUNCTION

Introduction of Function

A function is a group of statements that together perform a task. Every C++ program has at least
one function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among
different functions is up to you, but logically the division usually is such that each function
performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters.
A function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call. For
example, function strcat() to concatenate two strings, function memcpy() to copy one memory
location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list) {

body of the function

}

A C++ function definition consists of a function header and a function body. Here are all the
parts of a function −

Return Type − A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In
this case, the return_type is the keyword void.

Function Name − This is the actual name of the function. The function name and the parameter
list together constitute the function signature.

Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value to
the parameter. This value is referred to as actual parameter or argument. The parameter list
refers to the type, order, and number of the parameters of a function. Parameters are optional;
that is, a function may contain no parameters.

Function Body − The function body contains a collection of statements that define what the
function does.

Example

Following is the source code for a function called max(). This function takes two parameters
num1 and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2) {

// local variable declaration

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function.
The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so
following is also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call that
function in another file. In such case, you should declare the function at the top of the file
calling the function.

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a
function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A called
function performs defined task and when it’s return statement is executed or when its function-
ending closing brace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name,
and if function returns a value, then you can store returned value. For example −

#include <iostream>

using namespace std;

// function declaration

int max(int num1, int num2);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int ret;

 // calling a function to get max value.

 ret = max(a, b);

 cout << "Max value is : " << ret << endl;

 return 0;

}

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

I kept max() function along with main() function and compiled the source code. While running
final executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the
arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created
upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function −

Sr.No Call Type & Description
1 Call by Value

This method copies the actual value of an argument into the formal
parameter of the function. In this case, changes made to the parameter
inside the function have no effect on the argument.

2 Call by Pointer
This method copies the address of an argument into the formal parameter.
Inside the function, the address is used to access the actual argument used in
the call. This means that changes made to the parameter affect the
argument.

3 Call by Reference
This method copies the reference of an argument into the formal parameter.
Inside the function, the reference is used to access the actual argument used
in the call. This means that changes made to the parameter affect the
argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a
function cannot alter the arguments used to call the function and above mentioned example
while calling max() function used the same method.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last parameters. This
value will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the
function definition. If a value for that parameter is not passed when the function is called, the
default given value is used, but if a value is specified, this default value is ignored and the passed
value is used instead. Consider the following example −

#include <iostream>

using namespace std;

int sum(int a, int b = 20) {

 int result;

 result = a + b;

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm

 return (result);

}

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int result;

 // calling a function to add the values.

 result = sum(a, b);

 cout << "Total value is :" << result << endl;

 // calling a function again as follows.

 result = sum(a);

 cout << "Total value is :" << result << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Total value is :300

Total value is :120

