
VARIABLE AND OPERATORS

Variable Scope in C++
A scope is a region of the program and broadly speaking there are three places, where variables
can be declared −
Inside a function or a block which is called local variables,
In the definition of function parameters which is called formal parameters. Outside of all
functions which is called global variables.

Local Variables
Variables that are declared inside a function or block are local variables. They can be used only
by statements that are inside that function or block of code. Local variables are not known to
functions outside their own. Following is the example using local variables −
#include <iostream>
using namespace std;

int main () {
 // Local variable declaration:
 int a, b;
 int c;

 // actual initialization
 a = 10;
 b = 20;
 c = a + b;

 cout << c;

 return 0;
}

Global Variables
Global variables are defined outside of all the functions, usually on top of the program. The
global variables will hold their value throughout the life-time of your program.
A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. Following is the example using global and
local variables −

 Live Demo
#include <iostream>
using namespace std;

// Global variable declaration:
int g;

int main () {
 // Local variable declaration:
 int a, b;

 // actual initialization
 a = 10;
 b = 20;
 g = a + b;

 cout << g;

 return 0;
}
A program can have same name for local and global variables but value of local variable inside a
function will take preference. For example −
#include <iostream>
using namespace std;

// Global variable declaration:
int g = 20;

int main () {
 // Local variable declaration:
 int g = 10;

 cout << g;

 return 0;
}
When the above code is compiled and executed, it produces the following result −

http://tpcg.io/dRHHpD

10
Initializing Local and Global Variables
When a local variable is defined, it is not initialized by the system, you must initialize it yourself.
Global variables are initialized automatically by the system when you define them as follows −
Data Type Initializer
int 0
char '\0'
float 0
double 0
pointer NULL
It is a good programming practice to initialize variables properly, otherwise sometimes program
would produce unexpected result.

Operators in C++

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provides the following type of operators −

• Arithmetic Operators
• Relational Operators
• Logical Operators
• Bitwise Operators
• Assignment Operators
• Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other
operators one by one.

Arithmetic Operators
There are following arithmetic operators supported by C++ language −
Assume variable A holds 10 and variable B holds 20, then −
Show Examples
Operator Description Example
+ Adds two operands A + B will give 30
- Subtracts second

operand from the first
A - B will give -10

* Multiplies both operands A * B will give 200
/ Divides numerator by de-

numerator
B / A will give 2

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm

% Modulus Operator and
remainder of after an
integer division

B % A will give 0

++ Increment operator,
increases integer value
by one

A++ will give 11

-- Decrement operator,
decreases integer value
by one

A-- will give 9

Relational Operators
There are following relational operators supported by C++ language
Assume variable A holds 10 and variable B holds 20, then −
Show Examples
Operator Description Example
== Checks if the values of

two operands are equal
or not, if yes then
condition becomes true.

(A == B) is not true.

!= Checks if the values of
two operands are equal
or not, if values are not
equal then condition
becomes true.

(A != B) is true.

> Checks if the value of left
operand is greater than
the value of right
operand, if yes then
condition becomes true.

(A > B) is not true.

< Checks if the value of left
operand is less than the
value of right operand, if
yes then condition
becomes true.

(A < B) is true.

>= Checks if the value of left
operand is greater than
or equal to the value of
right operand, if yes then
condition becomes true.

(A >= B) is not true.

<= Checks if the value of left
operand is less than or

(A <= B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

equal to the value of
right operand, if yes then
condition becomes true.

Logical Operators
There are following logical operators supported by C++ language.
Assume variable A holds 1 and variable B holds 0, then −
Show Examples
Operator Description Example
&& Called Logical AND

operator. If both the
operands are non-zero,
then condition becomes
true.

(A && B) is false.

|| Called Logical OR
Operator. If any of the
two operands is non-
zero, then condition
becomes true.

(A || B) is true.

! Called Logical NOT
Operator. Use to
reverses the logical state
of its operand. If a
condition is true, then
Logical NOT operator will
make false.

!(A && B) is true.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^
are as follows −
p q p & q p | q p ^ q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1
Assume if A = 60; and B = 13; now in binary format they will be as follows −
A = 0011 1100
B = 0000 1101

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
The Bitwise operators supported by C++ language are listed in the following table. Assume
variable A holds 60 and variable B holds 13, then −
Show Examples
Operator Description Example
& Binary AND Operator

copies a bit to the result
if it exists in both
operands.

(A & B) will give 12 which
is 0000 1100

| Binary OR Operator
copies a bit if it exists in
either operand.

(A | B) will give 61 which
is 0011 1101

^ Binary XOR Operator
copies the bit if it is set in
one operand but not
both.

(A ^ B) will give 49 which
is 0011 0001

~ Binary Ones
Complement Operator is
unary and has the effect
of 'flipping' bits.

(~A) will give -61 which
is 1100 0011 in 2's
complement form due to
a signed binary number.

<< Binary Left Shift
Operator. The left
operands value is moved
left by the number of
bits specified by the right
operand.

A << 2 will give 240
which is 1111 0000

>> Binary Right Shift
Operator. The left
operands value is moved
right by the number of
bits specified by the right
operand.

A >> 2 will give 15 which
is 0000 1111

Assignment Operators
There are following assignment operators supported by C++ language −
Show Examples
Operator Description Example

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

= Simple assignment
operator, Assigns values
from right side operands to
left side operand.

C = A + B will assign
value of A + B into C

+= Add AND assignment
operator, It adds right
operand to the left
operand and assign the
result to left operand.

C += A is equivalent to
C = C + A

-= Subtract AND assignment
operator, It subtracts right
operand from the left
operand and assign the
result to left operand.

C -= A is equivalent to
C = C - A

*= Multiply AND assignment
operator, It multiplies right
operand with the left
operand and assign the
result to left operand.

C *= A is equivalent to
C = C * A

/= Divide AND assignment
operator, It divides left
operand with the right
operand and assign the
result to left operand.

C /= A is equivalent to
C = C / A

%= Modulus AND assignment
operator, It takes modulus
using two operands and
assign the result to left
operand.

C %= A is equivalent to
C = C % A

<<= Left shift AND assignment
operator.

C <<= 2 is same as C =
C << 2

>>= Right shift AND assignment
operator.

C >>= 2 is same as C =
C >> 2

&= Bitwise AND assignment
operator.

C &= 2 is same as C = C
& 2

^= Bitwise exclusive OR and
assignment operator.

C ^= 2 is same as C = C
^ 2

|= Bitwise inclusive OR and
assignment operator.

C |= 2 is same as C = C
| 2

Misc Operators
The following table lists some other operators that C++ supports.
Sr.No Operator & Description
1 sizeof

sizeof operator returns the size of a variable. For
example, sizeof(a), where ‘a’ is integer, and will return
4.

2 Condition ? X : Y
Conditional operator (?). If Condition is true then it
returns value of X otherwise returns value of Y.

3 ,
Comma operator causes a sequence of operations to be
performed. The value of the entire comma expression is
the value of the last expression of the comma-
separated list.

4 . (dot) and -> (arrow)
Member operators are used to reference individual
members of classes, structures, and unions.

5 Cast
Casting operators convert one data type to another. For
example, int(2.2000) would return 2.

6 &
Pointer operator & returns the address of a variable. For
example &a; will give actual address of the variable.

7 *
Pointer operator * is pointer to a variable. For example
*var; will pointer to a variable var.

Operators Precedence in C++
Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example,
the multiplication operator has higher precedence than the addition operator −
For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.
Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

Show Examples
Category Operator Associativity
Postfix () [] -> . ++ - - Left to right
Unary + - ! ~ ++ - - (type)* & sizeof Right to left
Multiplicative

* / % Left to right

Additive + - Left to right
Shift << >> Left to right
Relational < <= > >= Left to right
Equality == != Left to right
Bitwise AND & Left to right
Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Conditional ?: Right to left
Assignment = += -= *= /= %=>>= <<= &= ^=

|=
Right to left

Comma , Left to right

https://www.tutorialspoint.com/cplusplus/cpp_operators_precedence.htm

