
BASICS OF C++
Introduction of C++
C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming
language that supports procedural, object-oriented, and generic programming.

C++ is regarded as a middle-level language, as it comprises a combination of both high-level and
low-level language features.

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray Hill, New Jersey,
as an enhancement to the C language and originally named C with Classes but later it was
renamed C++ in 1983.

C++ is a superset of C, and that virtually any legal C program is a legal C++ program.

Note − A programming language is said to use static typing when type checking is performed
during compile-time as opposed to run-time.

Object-Oriented Programming

C++ fully supports object-oriented programming, including the four pillars of object-oriented
development −

• Encapsulation
• Data hiding
• Inheritance
• Polymorphism

Standard Libraries

Standard C++ consists of three important parts −

• The core language giving all the building blocks including variables, data types and literals,
etc.

• The C++ Standard Library giving a rich set of functions manipulating files, strings, etc.
• The Standard Template Library (STL) giving a rich set of methods manipulating data

structures, etc.

The ANSI Standard

The ANSI standard is an attempt to ensure that C++ is portable; that code you write for
Microsoft's compiler will compile without errors, using a compiler on a Mac, UNIX, a Windows
box, or an Alpha.

The ANSI standard has been stable for a while, and all the major C++ compiler manufacturers
support the ANSI standard.

Learning C++

The most important thing while learning C++ is to focus on concepts.

The purpose of learning a programming language is to become a better programmer; that is, to
become more effective at designing and implementing new systems and at maintaining old ones.

C++ supports a variety of programming styles. You can write in the style of Fortran, C, Smalltalk,
etc., in any language. Each style can achieve its aims effectively while maintaining runtime and
space efficiency.

Use of C++

C++ is used by hundreds of thousands of programmers in essentially every application domain.

C++ is being highly used to write device drivers and other software that rely on direct
manipulation of hardware under realtime constraints.

C++ is widely used for teaching and research because it is clean enough for successful teaching of
basic concepts.

Anyone who has used either an Apple Macintosh or a PC running Windows has indirectly used
C++ because the primary user interfaces of these systems are written in C++.

C++ Environment Setup

Local Environment Setup

If you are still willing to set up your environment for C++, you need to have the following two
softwares on your computer.

Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad, OS
Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. For example, Notepad
will be used on Windows and vim or vi can be used on windows as well as Linux, or UNIX.

The files you create with your editor are called source files and for C++ they typically are named
with the extension .cpp, .cp, or .c.

A text editor should be in place to start your C++ programming.

C++ Compiler
This is an actual C++ compiler, which will be used to compile your source code into final
executable program.

Most C++ compilers don't care what extension you give to your source code, but if you don't
specify otherwise, many will use .cpp by default.

Most frequently used and free available compiler is GNU C/C++ compiler, otherwise you can
have compilers either from HP or Solaris if you have the respective Operating Systems.

Installing GNU C/C++ Compiler

UNIX/Linux Installation

If you are using Linux or UNIX then check whether GCC is installed on your system by entering
the following command from the command line −

$ g++ -v

If you have installed GCC, then it should print a message such as the following −

Using built-in specs.
Target: i386-redhat-linux
Configured with: ../configure --prefix=/usr
Thread model: posix
gcc version 4.1.2 20080704 (Red Hat 4.1.2-46)

If GCC is not installed, then you will have to install it yourself using the detailed instructions
available at https://gcc.gnu.org/install/

Mac OS X Installation

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode development
environment from Apple's website and follow the simple installation instructions.

Xcode is currently available at developer.apple.com/technologies/tools/.

Windows Installation
To install GCC at Windows you need to install MinGW. To install MinGW, go to the MinGW
homepage, www.mingw.org, and follow the link to the MinGW download page. Download the
latest version of the MinGW installation program which should be named MinGW-<version>.exe.

While installing MinGW, at a minimum, you must install gcc-core, gcc-g++, binutils, and the
MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment variable so that
you can specify these tools on the command line by their simple names.

When the installation is complete, you will be able to run gcc, g++, ar, ranlib, dlltool, and several
other GNU tools from the Windows command line.

C++ Basic Syntax

https://gcc.gnu.org/install/
https://developer.apple.com/technologies/tools/
http://www.mingw.org/

When we consider a C++ program, it can be defined as a collection of objects that communicate
via invoking each other's methods. Let us now briefly look into what a class, object, methods,
and instant variables mean.

• Object − Objects have states and behaviors. Example: A dog has states - color, name, breed
as well as behaviors - wagging, barking, eating. An object is an instance of a class.

• Class − A class can be defined as a template/blueprint that describes the behaviors/states
that object of its type support.

• Methods − A method is basically a behavior. A class can contain many methods. It is in
methods where the logics are written, data is manipulated and all the actions are executed.

• Instance Variables − Each object has its unique set of instance variables. An object's state is
created by the values assigned to these instance variables.

C++ Program Structure

Let us look at a simple code that would print the words Hello World.

 Live Demo
#include <iostream>
using namespace std;

// main() is where program execution begins.
int main() {
 cout << "Hello World"; // prints Hello World
 return 0;
}

Let us look at the various parts of the above program −

• The C++ language defines several headers, which contain information that is either
necessary or useful to your program. For this program, the header <iostream> is needed.

• The line using namespace std; tells the compiler to use the std namespace. Namespaces are
a relatively recent addition to C++.

• The next line '// main() is where program execution begins.' is a single-line comment
available in C++. Single-line comments begin with // and stop at the end of the line.

• The line int main() is the main function where program execution begins.
• The next line cout << "Hello World"; causes the message "Hello World" to be displayed on

the screen.
• The next line return 0; terminates main()function and causes it to return the value 0 to the

calling process.

Compile and Execute C++ Program

Let's look at how to save the file, compile and run the program. Please follow the steps given
below −

http://tpcg.io/n4BVuS

• Open a text editor and add the code as above.
• Save the file as: hello.cpp
• Open a command prompt and go to the directory where you saved the file.
• Type 'g++ hello.cpp' and press enter to compile your code. If there are no errors in your

code the command prompt will take you to the next line and would generate a.out
executable file.

• Now, type 'a.out' to run your program.
• You will be able to see ' Hello World ' printed on the window.

$ g++ hello.cpp
$./a.out
Hello World

Make sure that g++ is in your path and that you are running it in the directory containing file
hello.cpp.

You can compile C/C++ programs using makefile. For more details, you can check our 'Makefile
Tutorial'.

Semicolons and Blocks in C++

In C++, the semicolon is a statement terminator. That is, each individual statement must be
ended with a semicolon. It indicates the end of one logical entity.

For example, following are three different statements −

x = y;
y = y + 1;
add(x, y);

A block is a set of logically connected statements that are surrounded by opening and closing
braces. For example −

{
cout << "Hello World"; // prints Hello World
return 0;
}

C++ does not recognize the end of the line as a terminator. For this reason, it does not matter
where you put a statement in a line. For example −

x = y;
y = y + 1;
add(x, y);

is the same as

x = y; y = y + 1; add(x, y);

https://www.tutorialspoint.com/makefile/index.htm
https://www.tutorialspoint.com/makefile/index.htm

C++ Identifiers

A C++ identifier is a name used to identify a variable, function, class, module, or any other user-
defined item. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by
zero or more letters, underscores, and digits (0 to 9).

C++ does not allow punctuation characters such as @, $, and % within identifiers. C++ is a case-
sensitive programming language. Thus, Manpower and manpower are two different identifiers in
C++.

Here are some examples of acceptable identifiers −

mohd zara abc move_name a_123
myname50 _temp j a23b9 retVal

C++ Keywords

The following list shows the reserved words in C++. These reserved words may not be used as
constant or variable or any other identifier names.

asm else new this
auto enum operator throw
bool explicit private true
break export protected try
case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned
const_cast goto signed using
continue if sizeof virtual
default inline static void
delete int static_cast volatile
do long struct wchar_t
double mutable switch while
dynamic_cast namespace template

Trigraphs

A few characters have an alternative representation, called a trigraph sequence. A trigraph is a
three-character sequence that represents a single character and the sequence always starts with
two question marks.

Trigraphs are expanded anywhere they appear, including within string literals and character
literals, in comments, and in preprocessor directives.

Following are most frequently used trigraph sequences −

Trigraph Replacement
??= #
??/ \
??' ^
??([
??)]
??! |
??< {
??> }
??- ~

All the compilers do not support trigraphs and they are not advised to be used because of their
confusing nature.

Whitespace in C++

A line containing only whitespace, possibly with a comment, is known as a blank line, and C++
compiler totally ignores it.

Whitespace is the term used in C++ to describe blanks, tabs, newline characters and comments.
Whitespace separates one part of a statement from another and enables the compiler to identify
where one element in a statement, such as int, ends and the next element begins.

Statement 1
int age;

In the above statement there must be at least one whitespace character (usually a space)
between int and age for the compiler to be able to distinguish them.

Statement 2
fruit = apples + oranges; // Get the total fruit

In the above statement 2, no whitespace characters are necessary between fruit and =, or
between = and apples, although you are free to include some if you wish for readability purpose.

Comments in C++
Program comments are explanatory statements that you can include in the C++ code. These
comments help anyone reading the source code. All programming languages allow for some
form of comments.

C++ supports single-line and multi-line comments. All characters available inside any comment
are ignored by C++ compiler.

C++ comments start with /* and end with */. For example −

/* This is a comment */

/* C++ comments can also
* span multiple lines
*/

A comment can also start with //, extending to the end of the line. For example −

 Live Demo
#include <iostream>
using namespace std;

main() {
 cout << "Hello World"; // prints Hello World

 return 0;
}

When the above code is compiled, it will ignore // prints Hello World and final executable will
produce the following result −

Hello World

Within a /* and */ comment, // characters have no special meaning. Within a // comment, /*
and */ have no special meaning. Thus, you can "nest" one kind of comment within the other
kind. For example −

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/
C++ Data Types
While writing program in any language, you need to use various variables to store various
information. Variables are nothing but reserved memory locations to store values. This means
that when you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer,
floating point, double floating point, boolean etc. Based on the data type of a variable, the
operating system allocates memory and decides what can be stored in the reserved memory.

Primitive Built-in Types

C++ offers the programmer a rich assortment of built-in as well as user defined data types.
Following table lists down seven basic C++ data types −

Type Keyword

http://tpcg.io/Q4esaC

Boolean bool
Character char
Integer int
Floating point float
Double floating point double
Valueless void
Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers −

• signed
• unsigned
• short
• long

The following table shows the variable type, how much memory it takes to store the value in
memory, and what is maximum and minimum value which can be stored in such type of
variables.

Type Typical Bit
Width

Typical Range

char 1byte -127 to 127 or 0 to 255
unsigned char 1byte 0 to 255
signed char 1byte -127 to 127
int 4bytes -2147483648 to 2147483647
unsigned int 4bytes 0 to 4294967295
signed int 4bytes -2147483648 to 2147483647
short int 2bytes -32768 to 32767
unsigned short
int

2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767
long int 8bytes -2,147,483,648 to

2,147,483,647
signed long int 8bytes same as long int
unsigned long
int

8bytes 0 to 4,294,967,295

long long int 8bytes -(2^63) to (2^63)-1
unsigned long
long int

8bytes 0 to
18,446,744,073,709,551,615

float 4bytes
double 8bytes
long double 12bytes
wchar_t 2 or 4 bytes 1 wide character

The size of variables might be different from those shown in the above table, depending on the
compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your
computer.

 Live Demo
#include <iostream>
using namespace std;

int main() {
 cout << "Size of char : " << sizeof(char) << endl;
 cout << "Size of int : " << sizeof(int) << endl;
 cout << "Size of short int : " << sizeof(short int) << endl;
 cout << "Size of long int : " << sizeof(long int) << endl;
 cout << "Size of float : " << sizeof(float) << endl;
 cout << "Size of double : " << sizeof(double) << endl;
 cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;

 return 0;
}

This example uses endl, which inserts a new-line character after every line and << operator is
being used to pass multiple values out to the screen. We are also using sizeof() operator to get
size of various data types.

When the above code is compiled and executed, it produces the following result which can vary
from machine to machine −

Size of char : 1
Size of int : 4
Size of short int : 2
Size of long int : 4
Size of float : 4
Size of double : 8
Size of wchar_t : 4

typedef Declarations

You can create a new name for an existing type using typedef. Following is the simple syntax to
define a new type using typedef −

typedef type newname;

For example, the following tells the compiler that feet is another name for int −

typedef int feet;

http://tpcg.io/iKNn78

Now, the following declaration is perfectly legal and creates an integer variable called distance −

feet distance;

Enumerated Types

An enumerated type declares an optional type name and a set of zero or more identifiers that
can be used as values of the type. Each enumerator is a constant whose type is the enumeration.

Creating an enumeration requires the use of the keyword enum. The general form of an
enumeration type is −

enum enum-name { list of names } var-list;

Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called colors and the variable
c of type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } c;
c = blue;

By default, the value of the first name is 0, the second name has the value 1, and the third has
the value 2, and so on. But you can give a name, a specific value by adding an initializer. For
example, in the following enumeration, green will have the value 5.

enum color { red, green = 5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that
precedes it.

C++ Variable Types
A variable provides us with named storage that our programs can manipulate. Each variable in
C++ has a specific type, which determines the size and layout of the variable's memory; the range
of values that can be stored within that memory; and the set of operations that can be applied to
the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must
begin with either a letter or an underscore. Upper and lowercase letters are distinct because C++
is case-sensitive −

There are following basic types of variable in C++ as explained in last chapter −

Sr.No Type & Description
1 bool

Stores either value true or false.

2 char

Typically a single octet (one byte). This is an integer
type.

3 int

The most natural size of integer for the machine.

4 float

A single-precision floating point value.

5 double

A double-precision floating point value.

6 void

Represents the absence of type.

7 wchar_t

A wide character type.

C++ also allows to define various other types of variables, which we will cover in subsequent
chapters like Enumeration, Pointer, Array, Reference, Data structures, and Classes.

Following section will cover how to define, declare and use various types of variables.

Variable Definition in C++

A variable definition tells the compiler where and how much storage to create for the variable. A
variable definition specifies a data type, and contains a list of one or more variables of that type
as follows −

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any
user-defined object, etc., and variable_list may consist of one or more identifier names
separated by commas. Some valid declarations are shown here −

int i, j, k;
char c, ch;
float f, salary;
double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler
to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists
of an equal sign followed by a constant expression as follows −

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.
int d = 3, f = 5; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly initialized
with NULL (all bytes have the value 0); the initial value of all other variables is undefined.

Variable Declaration in C++

A variable declaration provides assurance to the compiler that there is one variable existing with
the given type and name so that compiler proceed for further compilation without needing
complete detail about the variable. A variable declaration has its meaning at the time of
compilation only, compiler needs actual variable definition at the time of linking of the program.

A variable declaration is useful when you are using multiple files and you define your variable in
one of the files which will be available at the time of linking of the program. You will
use extern keyword to declare a variable at any place. Though you can declare a variable multiple
times in your C++ program, but it can be defined only once in a file, a function or a block of code.

Example

Try the following example where a variable has been declared at the top, but it has been defined
inside the main function −

 Live Demo
#include <iostream>
using namespace std;

// Variable declaration:
extern int a, b;
extern int c;
extern float f;

int main () {
 // Variable definition:
 int a, b;
 int c;
 float f;

 // actual initialization
 a = 10;

http://tpcg.io/odXXRO

 b = 20;
 c = a + b;

 cout << c << endl ;

 f = 70.0/3.0;
 cout << f << endl ;

 return 0;
}

When the above code is compiled and executed, it produces the following result −

30
23.3333

Same concept applies on function declaration where you provide a function name at the time of
its declaration and its actual definition can be given anywhere else. For example −

// function declaration
int func();
int main() {
// function call
int i = func();
}

// function definition
int func() {
return 0;
}

Lvalues and Rvalues

There are two kinds of expressions in C++ −

• lvalue − Expressions that refer to a memory location is called "lvalue" expression. An lvalue
may appear as either the left-hand or right-hand side of an assignment.

• rvalue − The term rvalue refers to a data value that is stored at some address in memory. An
rvalue is an expression that cannot have a value assigned to it which means an rvalue may
appear on the right- but not left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals
are rvalues and so may not be assigned and can not appear on the left-hand side. Following is a
valid statement −

int g = 20;

But the following is not a valid statement and would generate compile-time error −

10 = 20;
Variable Scope in C++
A scope is a region of the program and broadly speaking there are three places, where variables
can be declared −

• Inside a function or a block which is called local variables,
• In the definition of function parameters which is called formal parameters.
• Outside of all functions which is called global variables.

We will learn what is a function and it's parameter in subsequent chapters. Here let us explain
what are local and global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used only
by statements that are inside that function or block of code. Local variables are not known to
functions outside their own. Following is the example using local variables −

 Live Demo
#include <iostream>
using namespace std;

int main () {
 // Local variable declaration:
 int a, b;
 int c;

 // actual initialization
 a = 10;
 b = 20;
 c = a + b;

 cout << c;

 return 0;
}

Global Variables

Global variables are defined outside of all the functions, usually on top of the program. The
global variables will hold their value throughout the life-time of your program.

http://tpcg.io/QIjnPh

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. Following is the example using global and
local variables −

 Live Demo
#include <iostream>
using namespace std;

// Global variable declaration:
int g;

int main () {
 // Local variable declaration:
 int a, b;

 // actual initialization
 a = 10;
 b = 20;
 g = a + b;

 cout << g;

 return 0;
}

A program can have same name for local and global variables but value of local variable inside a
function will take preference. For example −

 Live Demo
#include <iostream>
using namespace std;

// Global variable declaration:
int g = 20;

int main () {
 // Local variable declaration:
 int g = 10;

 cout << g;

 return 0;
}

http://tpcg.io/dRHHpD
http://tpcg.io/dt7MP9

When the above code is compiled and executed, it produces the following result −

10

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must initialize it yourself.
Global variables are initialized automatically by the system when you define them as follows −

Data Type Initializer
int 0
char '\0'
float 0
double 0
pointer NULL

It is a good programming practice to initialize variables properly, otherwise sometimes program
would produce unexpected result.

C++ Basic Input /Output
The C++ standard libraries provide an extensive set of input/output capabilities which we will see
in subsequent chapters. This chapter will discuss very basic and most common I/O operations
required for C++ programming.

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a device like a
keyboard, a disk drive, or a network connection etc. to main memory, this is called input
operation and if bytes flow from main memory to a device like a display screen, a printer, a disk
drive, or a network connection, etc., this is called output operation.

I/O Library Header Files

There are following header files important to C++ programs −

Sr.No Header File & Function and Description
1 <iostream>

This file defines the cin, cout, cerr and clog objects,
which correspond to the standard input stream, the
standard output stream, the un-buffered standard error
stream and the buffered standard error stream,
respectively.

2 <iomanip>

This file declares services useful for performing
formatted I/O with so-called parameterized stream

manipulators, such as setw and setprecision.

3 <fstream>

This file declares services for user-controlled file
processing. We will discuss about it in detail in File and
Stream related chapter.

The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be
"connected to" the standard output device, which usually is the display screen. The cout is used
in conjunction with the stream insertion operator, which is written as << which are two less than
signs as shown in the following example.

#include <iostream>

using namespace std;

int main() {
 char str[] = "Hello C++";

 cout << "Value of str is : " << str << endl;
}

When the above code is compiled and executed, it produces the following result −

Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the
appropriate stream insertion operator to display the value. The << operator is overloaded to
output data items of built-in types integer, float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above
and endl is used to add a new-line at the end of the line.

The Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be attached to
the standard input device, which usually is the keyboard. The cin is used in conjunction with the
stream extraction operator, which is written as >> which are two greater than signs as shown in
the following example.

#include <iostream>

using namespace std;

int main() {
 char name[50];

 cout << "Please enter your name: ";
 cin >> name;
 cout << "Your name is: " << name << endl;

}

When the above code is compiled and executed, it will prompt you to enter a name. You enter a
value and then hit enter to see the following result −

Please enter your name: cplusplus
Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the appropriate
stream extraction operator to extract the value and store it in the given variables.

The stream extraction operator >> may be used more than once in a single statement. To
request more than one datum you can use the following −

cin >> name >> age;

This will be equivalent to the following two statements −

cin >> name;
cin >> age;

	UBASICS OF C++
	UIntroduction of C++
	UObject-Oriented Programming
	UStandard Libraries
	UThe ANSI Standard
	ULearning C++
	UUse of C++

	UC++ Environment Setup
	ULocal Environment Setup
	UText Editor
	UC++ Compiler

	UInstalling GNU C/C++ Compiler
	UUNIX/Linux Installation
	Mac OS X Installation
	UWindows Installation

	UC++ Basic Syntax
	UC++ Program Structure
	UCompile and Execute C++ Program
	USemicolons and Blocks in C++
	UC++ Identifiers
	UC++ Keywords
	UTrigraphs
	UWhitespace in C++
	Statement 1
	Statement 2

	UComments in C++
	UC++ Data Types
	UPrimitive Built-in Types
	typedef Declarations
	UEnumerated Types

	UC++ Variable Types
	UVariable Definition in C++
	UVariable Declaration in C++
	Example

	Lvalues and Rvalues

	UVariable Scope in C++
	ULocal Variables
	UGlobal Variables
	Initializing Local and Global Variables

	C++ Basic Input /Output
	I/O Library Header Files
	The Standard Output Stream (cout)
	The Standard Input Stream (cin)

