
POINTER AND STRUCTURE
A pointer is a variable that stores the address of another variable. Unlike other variables that hold
values of a certain type, pointer holds the address of a variable. For example, an integer variable holds
(or you can say stores) an integer value, however an integer pointer holds the address of a integer
variable. In this guide, we will discuss pointers in C programming with the help of examples.
Before we discuss about pointers in C, lets take a simple example to understand what do we mean by
the address of a variable.

A simple example to understand to access the address of a variable without pointers
In this program, we have a variable num of int type. The value of num is 10 and this value must be
stored somewhere in the memory, right? A memory space is allocated for each variable that holds the
value of that variable, this memory space has an address. For example we live in a house and our house
has an address, which helps other people to find our house. The same way the value of the variable is
stored in a memory address, which helps the C program to find that value when it is needed.
So let’s say the address assigned to variable num is 0x7fff5694dc58, which means whatever value we
would be assigning to num should be stored at the location: 0x7fff5694dc58. See the diagram below.
#include <stdio.h>
int main()
{
 int num = 10;
 printf("Value of variable num is: %d", num);
 /* To print the address of a variable we use %p
 * format specifier and ampersand (&) sign just
 * before the variable name like &num.
 */
 printf("\nAddress of variable num is: %p", &num);
 return 0;
}

Output:
Value of variable num is: 10
Address of variable num is: 0x7fff5694dc58

A Simple Example of Pointers in C
This program shows how a pointer is declared and used. There are several other things that we can do
with pointers, we have discussed them later in this guide. For now, we just need to know how to link a
pointer to the address of a variable.

Important point to note is: The data type of pointer and the variable must match, an int pointer can
hold the address of int variable, similarly a pointer declared with float data type can hold the address of
a float variable. In the example below, the pointer and the variable both are of int type.
#include <stdio.h>
int main()
{
 //Variable declaration

 int num = 10;

 //Pointer declaration
 int *p;

 //Assigning address of num to the pointer p
 p = #

 printf("Address of variable num is: %p", p);
 return 0;
}
Output:
Address of variable num is: 0x7fff5694dc58

C Example to swap two numbers using pointers
/*C program by Chaitanya for beginnersbook.com
 * Program to swap two numbers using pointers*/
#include <stdio.h>

// function to swap the two numbers
void swap(int *x,int *y)
{
 int t;
 t = *x;
 *x = *y;
 *y = t;
}

int main()
{
 int num1,num2;

 printf("Enter value of num1: ");
 scanf("%d",&num1);
 printf("Enter value of num2: ");
 scanf("%d",&num2);

 //displaying numbers before swapping
 printf("Before Swapping: num1 is: %d, num2 is: %d\n",num1,num2);

 //calling the user defined function swap()
 swap(&num1,&num2);

 //displaying numbers after swapping
 printf("After Swapping: num1 is: %d, num2 is: %d\n",num1,num2);

 return 0;
}
Output:

Data Structures

Data structure is a storage that is used to store and organize data. It is a way of arranging data on a

computer so that it can be accessed and updated efficiently.

Depending on your requirement and project, it is important to choose the right data structure for your

project. For example, if you want to store data sequentially in the memory, then you can go for the

Array data structure.

Types of Data Structure

Basically, data structures are divided into two categories: Linear data structure Non-linear data

structure Let's learn about each type in detail.

Linear data structures

In linear data structures, the elements are arranged in sequence one after the other. Since elements

are arranged in particular order, they are easy to implement.

However, when the complexity of the program increases, the linear data structures might not be the

best choice because of operational complexities.

Popular linear data structures are:

1. Array Data Structure

In an array, elements in memory are arranged in continuous memory. All the elements of an array are

of the same type. And, the type of elements that can be stored in the form of arrays is determined by

the programming language.

To learn more, visit Java Array.

2. Stack Data Structure

In stack data structure, elements are stored in the LIFO principle. That is, the last element stored in a

stack will be removed first.

It works just like a pile of plates where the last plate kept on the pile will be removed first. To learn

more, visit Stack Data Structure.

3. Queue Data Structure

Unlike stack, the queue data structure works in the FIFO principle where first element stored in the

queue will be removed first.

It works just like a queue of people in the ticket counter where first person on the queue will get the

ticket first. To learn more, visit Queue Data Structure.

4. Linked List Data Structure

In linked list data structure, data elements are connected through a series of nodes. And, each node

contains the data items and address to the next node.

Write a C program to store the information of Students using Structure. The information of each
student to be stored is:
Each Student Record should have:
 Name
 Roll Number
 Age
 Total Marks

 A structure is a user-defined data type in C/C++. A structure creates a data type that can be
used to group items of possibly different types into a single type.

 ‘struct’ keyword is used to create the student structure as:

 struct Student

 {

 char* name;

 int roll_number;

 int age;

 double total_marks;

 };

 Get the number of Students whose details are to be stored. Here we are taking 5 students for
simplicity.

 Create a variable of Student structure to access the records. Here it is taken as ‘student’

 Get the data of n students and store it in student’s fields with the help of dot (.) operator
Syntax:

 student[i].member = value;

 After all the data is stored, print the records of each students using the dot (.) operator and
loop.

Syntax:
student[i].member;
Below is the implementation of the above approach:

// C Program to Store Information

https://www.geeksforgeeks.org/structures-c/

// of Students Using Structure

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Create the student structure
struct Student {
 char* name;
 int roll_number;
 int age;
 double total_marks;
};

// Driver code
int main()
{
 int i = 0, n = 5;

 // Create the student's structure variable
 // with n Student's records
 struct Student student[n];

 // Get the students data
 student[0].roll_number = 1;
 student[0].name = "Geeks1";
 student[0].age = 12;
 student[0].total_marks = 78.50;

 student[1].roll_number = 5;
 student[1].name = "Geeks5";
 student[1].age = 10;
 student[1].total_marks = 56.84;

 student[2].roll_number = 2;
 student[2].name = "Geeks2";
 student[2].age = 11;
 student[2].total_marks = 87.94;

 student[3].roll_number = 4;
 student[3].name = "Geeks4";
 student[3].age = 12;
 student[3].total_marks = 89.78;

 student[4].roll_number = 3;

 student[4].name = "Geeks3";
 student[4].age = 13;
 student[4].total_marks = 78.55;

 // Print the Students information
 printf("Student Records:\n\n");
 for (i = 0; i < n; i++) {
 printf("\tName = %s\n", student[i].name);
 printf("\tRoll Number = %d\n", student[i].roll_number);
 printf("\tAge = %d\n", student[i].age);
 printf("\tTotal Marks = %0.2f\n\n",
student[i].total_marks);
 }

 return 0;
}

Output:
Student Records:

 Name = Geeks1
 Roll Number = 1
 Age = 12
 Total Marks = 78.50

 Name = Geeks5
 Roll Number = 5
 Age = 10
 Total Marks = 56.84

 Name = Geeks2
 Roll Number = 2
 Age = 11
 Total Marks = 87.94

 Name = Geeks4
 Roll Number = 4
 Age = 12
 Total Marks = 89.78

 Name = Geeks3
 Roll Number = 3
 Age = 13
 Total Marks = 78.55

