Percentage

How to change % into fraction

 $\frac{1}{5}$

 $20\% = \frac{20}{100} =$

25%

 $\frac{1}{4}$ $\frac{2}{5}$ $40\% = \frac{40}{100} =$ $70\% = \frac{70}{100} = \frac{7}{10}$ $16\frac{2}{3}\% = \frac{50}{3}\% = \frac{1}{6}$ $14\frac{2}{7}\% = \frac{100}{7}\% = \frac{1}{7}\%$

= ---- =

How to change the fraction into %

 $\frac{1}{5} \Rightarrow \frac{1}{5} \times 100 = 20\%$ $\frac{1}{4} \Rightarrow \frac{1}{4} \times 100 = 25\%$ $\frac{1}{6} \Rightarrow \frac{1}{6} \times 100 = \frac{50}{3} = 16\frac{2}{3}\%$ $\frac{1}{9} \Rightarrow \frac{1}{9} \times 100 = \frac{100}{9}\% = 11\frac{1}{9}\%$

The following fractions are generally used in exams. So, I recommend you to remember these fractions. These fractions are very useful to solve the lengthy questions with in time.

$$\frac{1}{2} = 50\% \qquad \frac{1}{11} = 9\frac{1}{11}\% \quad \frac{1}{40} = 2\frac{1}{2}\%$$

1

$$\frac{1}{3} = 33\frac{1}{3}\% \quad \frac{1}{12} = 8\frac{1}{3}\% \quad \frac{1}{50} = 2\%$$

$$\frac{1}{4} = 25\% \qquad \frac{1}{13} = 7\frac{9}{13}\% \quad \frac{3}{8} = 37\frac{1}{2}\% \quad \text{(in)}$$

$$\frac{1}{5} = 20\% \quad \frac{1}{14} = 7\frac{1}{7}\% \quad \frac{5}{8} = 62\frac{1}{2}\%$$

$$\frac{1}{6} = 16\frac{2}{3}\% \quad \frac{1}{15} = 6\frac{2}{3}\% \quad \frac{4}{7} = 57\frac{1}{7}\%$$

$$\frac{1}{7} = 14\frac{2}{7}\% \quad \frac{1}{16} = 6\frac{1}{4}\% \quad \frac{5}{7} = 71\frac{3}{7}\% \quad \text{(v)}$$

$$\frac{1}{8} = 12\frac{1}{2}\% \quad \frac{1}{20} = 5\% \quad \frac{1}{9} = 11\frac{1}{9}\%$$

$$\frac{1}{24} = 4\frac{1}{6}\% \quad \frac{1}{10} = 10\% \quad \frac{1}{25} = 4\%$$
(v)

These are Basic Fraction.

(i)	If I want to know the % value		
	of $\frac{5}{9}$ then go to $\frac{1}{9}$		
	$\frac{1}{9} = 11\frac{1}{9}\% = \xi_{11}^{a} + \frac{1}{9}\frac{\ddot{0}}{\phi}$		
	$\frac{5}{9} = 55\frac{5}{9}\%$		
(ii)	Find the % value of $\frac{3}{8}$		
$\frac{1}{8}$	$= 12\frac{1}{2}\% = \check{g}^{12} + \frac{1}{2\check{g}}\%$		
$\frac{3}{8}$	$= 36 + \frac{3}{2} = 36 + 1\frac{1}{2} = 37\frac{1}{2}\%$		
(iii)	Find the % value of $\frac{5}{6}$		
	$\frac{1}{6} = 16\frac{2}{3}\% = 16 + \frac{2}{3}$		
	$\frac{5}{6} = 80 + \frac{1}{3}$		

$$= 80 + 3\frac{1}{3}\% = 83\frac{1}{3}\%$$
(iv) Find the % value of $\frac{2}{3}$
 $\frac{1}{3} = 33\frac{1}{3}\% = \frac{x}{8}3^{3} + \frac{1}{3}\frac{5}{9}\%$
 $\frac{2}{3} = 66 + \frac{2}{3} = 66\frac{2}{3}\%$
(v) Find the % value of $\frac{5}{8}$
 $\frac{1}{8} = 12\frac{1}{2}\% = 12 + \frac{1}{2}$
 $\frac{5}{8} = 60 + \frac{5}{2} = 60 + 2\frac{1}{2} = 62\frac{1}{2}\%$
(vi) Find the % value of $\frac{4}{7}$
 $\frac{1}{7} = 14\frac{2}{7}\% = 14 + \frac{2}{7}\%$
 $\frac{4}{7} = 56 + \frac{8}{7}\% = 56 + 1\frac{1}{7} = 57\frac{1}{7}\%$
(vii) Find the % value of $\frac{7}{12}$
 $\frac{1}{12} = 8\frac{1}{3}\% = 8 + \frac{1}{3}\%$
(viii) Find the % value of $\frac{11}{15}$
 $\frac{1}{15} = 6\frac{2}{3}\% = 6 + \frac{2}{3}\%$
 $\frac{11}{15} = 66 + \frac{22}{3}\%$
 $= 66 + 7\frac{1}{3}\% = 73\frac{1}{3}\%$

(ix) Find the % value of $\frac{9}{16}$

$$\frac{1}{16} = 6\frac{1}{4}\% = 6 + \frac{1}{4}\%$$
$$\frac{9}{16} = 54 + \frac{9}{4} = 54 + 2\frac{1}{4}\%$$
$$= 56\frac{1}{4}\%$$

Find the % value of $\frac{7}{40}$ (x)

$$\frac{1}{40} = 2\frac{1}{2}\% = 2 + \frac{1}{2}\%$$
$$\frac{7}{40} = \overset{\text{a}}{\xi} \frac{14}{2} + \frac{7\ddot{0}}{2}\frac{\dot{0}}{9}\% = 17\frac{1}{2}\%$$

How to change the fraction whose % value is more than 100%

Find the % value of $\frac{7}{5}$ (i) $\frac{7}{5} \Rightarrow \frac{5}{5} + \frac{2}{5}$ ⇒ 100% + 40% \Rightarrow 140%

(ii) Find the % value of
$$\frac{35}{8}$$

 $\frac{35}{8} = \frac{32}{8} + \frac{3}{8}$
 $= 400\% + 37\frac{1}{2}\% = 437\frac{1}{2}\%$
(iii) Find the % value of $\frac{33}{7}$
 $\frac{33}{7} = \frac{28}{7} + \frac{5}{7}$
 $= 400\% + 71\frac{3}{7}\% = 471\frac{3}{7}\%$
(iv) Find the % value of $\frac{23}{12}$
 $\frac{23}{12} = \frac{12}{12} + \frac{11}{12}$
 $= 100\% + 91\frac{2}{3}\% = 191\frac{2}{3}\%$

Alternatively:

$$\frac{23}{12} = \frac{24}{12} - \frac{1}{12}$$
$$= 200\% - 8\frac{1}{3}\% = 191\frac{2}{3}\%$$
Find the % value of $\frac{41}{6}$
$$\frac{41}{6} = \frac{42}{6} - \frac{1}{6}$$
$$= 700\% - 16\frac{2}{3}\% = 683\frac{1}{3}\%$$

(v)

(ii)

How to change % into fraction whose % value is more than 100% Find the fraction value of (i) 1 - - 1 0/

$$157 \frac{1}{7}\% = 100\% + 57 \frac{1}{7}\%$$
$$= 1 + \frac{4}{7} = \frac{11}{7}$$
Find the fraction value of $616 \frac{2}{3}\%$
$$616 \frac{2}{3}\% = 600\% + 16 \frac{2}{3}\%$$
$$= 6 + \frac{1}{6} = \frac{37}{6}$$

(iii) Find the fraction value of $366\frac{2}{3}\%$ $366\frac{2}{3}\% = 300\% + 66\frac{2}{3}\%$ $=3+\frac{2}{3}=\frac{11}{3}$ Find the fraction value of Fraction Method: (iv) $208\frac{1}{3}\%$

 $208\frac{1}{3}\% = 200\% + 8\frac{1}{3}\%$ $= 2 + \frac{1}{12} = \frac{25}{12}$

How to understand the actual meaning of fraction.

 $16\frac{2}{3}\% = \frac{1 \rightarrow 1}{6 \rightarrow 6}$ represents its % result number/value

$$\rightarrow 14\frac{2}{7}\% = \frac{1}{7}$$

means $7 \times 14\frac{2}{7}\% = 1$
$$\rightarrow 62\frac{1}{2}\% = \frac{5}{8}$$

means $8 \times 62\frac{1}{2}\% = 5$
$$\rightarrow 37\frac{1}{2}\% = \frac{3}{8}$$

means $8 \times 37\frac{1}{2}\% = 3$

QUESTIONS BASED ON FRACTION

If $37\frac{1}{2}\%$ of a number is added 1.

with itself then result becomes 1320. Find the original number.

Detailed Method :

Let the original number be xAccording to the question,

$$x + x \times 37\frac{1}{2}\% = 1320$$
$$x + x \times \frac{3}{8} = 1320$$
$$\frac{8x + 3x}{8} = 1320$$
$$\frac{11x}{8} = 1320$$
$$x = 1320 \times \frac{8}{11} = 960$$

 $37\frac{1}{2}\% = \frac{3}{8} \xrightarrow{>} \%$ result Orignal Number

Original number = 8 unit Result formed = 8 unit + 3 unit 1

$$\begin{bmatrix} 8 \times 37\frac{1}{2}\% = 3 \end{bmatrix}$$
11 unit \rightarrow 1320
1 unit \rightarrow 120
So, the original number = 8 ×
120 = 960

2. If $62\frac{1}{2}\%$ of a number is sub-

tracted from itself then result becomes 6321. Find the original number.

Detailed Solution,

Let the original number = x A.T.Q,

 $x - x \times 62 \frac{1}{2}\% = 6321$ $x - x \times \frac{5}{8} = 6321$ $\frac{3x}{8} = 6321$ x = 16856

Fraction method :

 $62\frac{1}{2}\% = \frac{5}{8}$ $\left[8 \times 62\frac{1}{2}\% = 5\right]$

Original number = 8 unit Result formed = 8 unit – 5 unit 3 units \rightarrow 6321 1 unit \rightarrow 2107 So, original number = 8 × 2107 = 16,856

3. If $16\frac{2}{3}\%$ of a number is added with itself then result becomes 4956. Find the original number.

Sol. Let the original no. = *x* According to the question

$$x + x \times 16\frac{2}{3}\% = 4956$$
$$x + \frac{x}{6} = 4956$$
$$\frac{7x}{6} = 4956$$
$$x = 708 \times 6 = 4248$$
Alternate:

 $16\frac{2}{3}\% = \frac{1}{6} \rightarrow \%$ result Original number Now, New No = 6 + 1 = 7 unit = 4956 1unit = 708 Original no. = 6 unit = 6 × 708 = 4248

4. If $6\frac{2}{3}\%$ of a number is subtracted from itself then result

becomes 5670. Find the original number.

Sol.

 $-6\frac{2}{3}\% = \frac{1}{15} \longrightarrow \text{Substract value}$ New Value = 15 - 1 = 14 unit = 5670 1 unit = 405 Original value = 405 × 16 = 6480

5. If 11 ¹/₉% of a number is added with itself then result becomes 900 find the original number.
Sol. +11 ¹/₉% = ¹/₉ → Added value Original number New value = 9 + 1 = 10 unit = 900 1 unit = 900 1 unit = 90 Original no. = 90 × 9 = 810
6. What is 20% of 50% of 75% of 70?

Sol. Value =
$$70 \times \frac{1}{5} \times \frac{1}{2} \times \frac{3}{4}$$

$$=\frac{21}{4}=5.25$$

If 20% of (P + Q) = 40% of (P - Q) then find P : Q

Sol.
$$\frac{20}{100} (P + Q) = \frac{40}{100} (P - Q)$$

 $P + Q = 2P - 2Q$
 $P - Q = 4P - Q$
 $3Q = 1P$
 $P : Q = 3 : 1$
8. What is 20% of 25% of 300 ?

Sol. $300 \times \frac{20}{100} \times \frac{25}{100} = 15$ **9.** 25% of what number is 36 ? **Sol.** Let the number be *x*

then
$$x \times \frac{25}{100} = 36$$

 $x = 36 \times 4 = 144$

10. If 240 is 20% of a number, then 120% of that numbe will be ?

sol. Let the number be = x 20% of x = 240 $x \times \frac{1}{5} = 240$ x = 1200Now, $1200 \times 120\% = 1200 \times \frac{120}{100}$ = 1440

11. If we express $41\frac{3}{17}\%$ as a fraction, then it is equal to :

Sol.
$$41\frac{3}{17}\% = \frac{700}{17} \times \frac{1}{100} = \frac{7}{17}$$

12. If 125% of *x* is 100, then *x* is:

Sol.
$$x \times \frac{125}{100} = 100$$

 $x = \frac{100' \ 100}{125} = 80$

13. If 50% of (x - y) = 30% of (x + y) then what percent is *y* of *x*?

Sol.
$$\frac{50}{100} (x - y) = \frac{30}{100} (x + y)$$

 $50x - 50y = 30x + 30y$
 $50x - 30x = 30 y + 50 y$
 $20x = 80 y$
 $x = 4$
 $y = 1$
So, y is $\frac{1}{4} = 25\%$

14. If 64 is added in a number then number becomes $157 \frac{1}{7}\%$ of itself. Find the number.

Sol.
$$157\frac{1}{7}\% = \frac{11}{7}$$

$$\begin{bmatrix} 7 \times 157\frac{1}{7}\% = 11 \end{bmatrix}$$
7 unit 11 unit
4 unit $\rightarrow 64$
1 unit $\rightarrow 16$
So, the original number = 7 × 16 = 112

15. If 930 is added in a number

then number becomes $444 \frac{4}{9}\%$ of itself. Find the original num-

ber.

Sol.
$$444\frac{4}{9}\% = \frac{40}{9}$$

$$444\frac{4}{9} = 400\% + 44\frac{4}{9}\%$$
$$= 4 + \frac{4}{9} = \frac{40}{9}$$
and $9 \times 444\frac{4}{9}\% = 40$

Original number Formed number 9 unit 40 unit

+ 31unit
$$\rightarrow$$
 930
1 unit \rightarrow 30

So, the original number = $9 \times 30 = 270$

16. The price of a commodity rise from `6 per kg to `7.50 per kg. If the expenditure cannot increase the percentage of reduction in consumption is

Sol. Percentage increase

$$= \frac{7.50 - 6}{6} \times 100 = 25\%$$

 \setminus Percentage decrease in consumption

$$=\frac{25}{125}$$
 100 $=20\%$

17. If the length of a rectangle is

increased by $37\frac{1}{2}\%$ and its breadth is decreased by 20%. Find the % change in the area.

Sol. Length
$$\times$$
 Breadth = Area
 $8 \times 5 = 40$
 $11 \times 4 = 44$ +4
 $\left[37\frac{1}{2}\% = \frac{3}{8}\right] \left[20\% = \frac{1}{5}\right]$

% change in Area = $\frac{4}{40} \times 100$

18. If the sides of a square is increased by 40%. Find the % change in its area.

% change in Area = $\frac{24}{25} \times 100 = 96\%$

19. The price of sugar is increased by $16\frac{2}{3}$ % and; the consump-

tion of a family is decreased by 20%. Find the % change in his expenditure.

Sol.

Price Consumption Expenditure $\begin{bmatrix} 6 \times 5 &= 30 \\ 7 \times 4 &= 28 \end{bmatrix} -2$

% change in his expenditure

$$=\frac{2}{30}\times 100 = 6\frac{2}{3}\%$$

20. The sale of a cinema ticket is increased by $57\frac{1}{7}\%$ and the price of ticket is increased by $16\frac{2}{3}\%$. Find the % change in

 $16\frac{1}{3}$ %. Find the % change in his revenue.

Sol. Sale Price $7 \times 6 = 42$ $11 \times 7 = 77$ +35 $57\frac{1}{7}\% = \frac{4}{7}, \quad 16\frac{2}{3}\% = \frac{1}{6}$

% Change in his revenue

$$\Rightarrow \frac{35}{42} \times 100 \Rightarrow 83\frac{1}{3}\%$$

21. If one of the sides of a rectangle is increased by 20% and the

other is increased by 5%. Find the percent value by which the area changes.

Sol. Area of rectangle = Length × Breadth

Length +20% =
$$\frac{1}{5}$$

Breadth +5% = $\frac{1}{20}$
L B Area
 $5 \times 20 = 100$
 $6 \times 21 = 126$ 26
Required% = $\frac{26}{100} \times 100$

22. If one of the sides of rectangle

increased by $37\frac{1}{2}\%$ and the other is decreased by 20% find

the percent value by which area changes.

Sol. Area = Length × Breadth

Length =
$$+37\frac{1}{2}\% = \frac{3}{8}$$

Breadth = $-20\% = \frac{1}{5}$
L B Area
 $8 \times 5 = 40$
 $11 \times 4 = 444$
Bogwind $\% = \frac{4}{4} \times 100 = 10\%$

Required % = $\frac{4}{40} \times 100 = 10\%$ ↑ (Increase)

23. A number is first reduced by 20% and then it is increased by 80%. What was the net effect?

Sol.
$$-20\% = \frac{-1}{5}$$
, 5 4
 $+80\% = \frac{+4}{5}$, $\frac{5}{25}$, $\frac{9}{36}$

Required % =
$$\frac{11}{25} \times 100$$

= 44% (Increase)

24. The tax imposed on an article

is increased by 10% and its consumption decreased by 10%. Find the percentage change in revenue from it.

Sol. I
$$+10\% = \frac{1}{10}$$
, 10 11
II $-10\% = \frac{1}{10}$, $\frac{10}{100} = \frac{9}{99}$

Required % =
$$\frac{1}{100} \times 100$$

= 1% (decrease)

25. Two numbers are respectively 20% and 50% more than a third. Now what percentage is the first of the second?

Sol. Let th	e third	number be = 100
Ι	II	III
120	150	100
Then,	$\frac{120}{150} \times 1$	00 = 80%