Indices and Surds

Type – I

⇒ Let n be a positive integer and a be real number, then: $a^n = \frac{a \times a \times a \times \times a}{(n \ factors)}$ a^n is called "nth Power of a" or "a raised to the power n" where, a is called the base and n is called index or exponent of the power a^n . **E.x.** 3^2 = square of 3, 3^3 = cube of 3 etc.

Laws of Indices:

1.
$$a^m \times a^n = a^{m+n}$$
 where $a \neq 0$ and $(m, n) \in I$
2. $a^n \times a^n \times a^p \times \dots = a^{m+n+p}$
3. $\frac{a^m}{a^n} = \{\frac{a^{m-n}}{1} \quad if \ n > m \\ if \ m = n$
4. $(a^m)^n = a^{nm} = (a^n)^m$
5. $a^{m^n} = a^{m \times m \times \dots \dots n}$ times $\neq (a^m)^n$
6. $(ab)^n = a^n b^n$
7. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$
8. $(-a)^n = \begin{bmatrix} a^n, when \ n \ is \ even \\ -a^n, when \ n \ is \ odd \end{bmatrix}$

These rules are also true when n is negative or fraction.

9.
$$a^n = a^{(-1)n} = (a^{-1})^n = \left(\frac{1}{a}\right)^n$$

 $= \frac{1}{a} \times \frac{1}{a} \times \frac{1}{a} \dots \dots n \text{ times}$
10. $a^{p/q} = a^{1/q \times p} = \left(a^{\frac{1}{q}}\right)^p$ is positive integer, $q \neq 0$
 $= a^{1/q} \times a^{1/q} \times \dots \dots \dots p \text{ times}$
• $a^m = a^n \Longrightarrow m = n \text{ when } a \neq 0, 1$
• $a^m = b^m \Longrightarrow a = b$

Ex:
$$\left(-\frac{1}{343}\right)^{-\frac{2}{3}}$$

Sol. $\left(-\frac{1}{343}\right)^{-\frac{2}{3}} = \left(-\frac{1}{7^3}\right)^{-2/3} = (-7^{-3})^{-2/3}$
 $= (-7)^{-3 \times -\frac{2}{3}} = (-7)^2 = 49$

Ex:
$$3^{-3} + (-3)^3$$

Sol. $3^{-3} + (-3)^3 = \frac{1}{3^3} + (-3)^3 = \frac{1}{27} - 27$
$$= \frac{1 - 729}{27} = -\frac{728}{27}$$

Ex: If $2^{2x-1} = \frac{1}{8^{(x-3)}}$, then x =? Sol. $2^{2x-1} = \frac{1}{8^{(x-3)}} \implies 2^{2x-1} = \frac{1}{2^{3(x-3)}}$ $\implies 2^{2x-1} = \frac{1}{2^{3x-9}}$ $\implies (2^{2x-1})(2^{3x-9}) = 1$ $\implies 2^{(2x-1)+(3x-9)} = 1$ $\implies 2^{5x-10} = 1 \implies 2^{5(x-2)} = 1$ $\implies 2^{5(x-2)} = 2^{\circ}$ $\implies x - 2 = 0 \implies x = 2$

Type – II

Surd: If a rational and n is a positive integer and $a^{1/n} = \sqrt[n]{a}$ is

Irrational, then $\sqrt[n]{a}$ is called "surd of order n" or "nth root of a" For the surd $\sqrt[n]{a}$, n is called the surd – index or the order of the surd and "a" is called the radicand. The symbol " $\sqrt{}$ is called the surd sign or radical.

Ex. $\sqrt{5}$ is a surd of order 2 or square root of 5.

 $\sqrt[3]{6}$ is surd of order 3 or cube root of 6.

 $\sqrt{6+5}$ is not a surd as

 $6 + \sqrt{5}$ is not a rational number.

- Every surd is an irrational number but every irrational number is not a surd.
- In the surd $a\sqrt[n]{b}$, *a* and *b* are called factors of the surd.

Ex. $3\sqrt{5}$, $2\sqrt{7}$, $5\sqrt[3]{7}$

Quadratic surd: A Surd of order 2 (i.e. \sqrt{a}) is called a quadratic surd.

Ex: $\sqrt{2} = 2^{1/2}$ is a quadratic surd but $\sqrt{4} = 4^{1/2}$ is not a quadratic surd because $\sqrt{4} = 2$ is a rational number. Therefore $\sqrt{4}$ is not a surd.

Cubic Surd: A surd of order 3(i.e. $\sqrt[3]{a}$) is called a cubic surd.

Ex. $\sqrt[3]{9}$ is a cubic surd but $\sqrt[3]{27}$ is not a surd because $\sqrt[3]{27} = 3$ is rational number.

Important Formula Based on Surds:

(i)
$$\sqrt[n]{a^n} = a$$

(ii) $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$
(iii) $\sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{a}$
(iv) $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a} = \sqrt[n]{\sqrt[m]{a}}$
(v) $(\sqrt[n]{a^m}) = (a)^{m/n} = (a^m)^{1/n} = \sqrt[n]{a^m}$
(vi) $\sqrt{a} \times \sqrt{a} = a$
(vii) $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ and k. $\sqrt[n]{a} \times l$. $\sqrt[m]{b} = kl$. $\sqrt[n]{a} \cdot \sqrt[m]{b} = kl$. $\sqrt[mn]{a^mb^n}$
(viii) $\sqrt{a^2b} = a\sqrt{b}$
(ix) $(\sqrt{a} + \sqrt{b})^2 = a + b + 2\sqrt{ab}$
(x) $(\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab}$
(xi) $(\sqrt{a} + \sqrt{b}) \times (\sqrt{a} - \sqrt{b}) = a - b$, where a and b are positive rational numbers.

Ex. The surd $\sqrt[4]{3 \times 5^4}$ is not in its simplest form since the number under the radical sign had factor 5^4 . its index is equal to the order of the surd. Its simplest form: $\sqrt[4]{3 \times 5^4} = \sqrt[4]{3}$. $\sqrt[4]{5^4} = (\sqrt[4]{3})(5) = 5.(\sqrt[4]{3})$

Similar or like Surds: Surds having same irrational factors are called "similar or like surd".

Ex.: $\sqrt[3]{3}$, $7\sqrt{3}$, $\frac{2}{5}\sqrt{3}$, $\sqrt{3}$ etc. are similar surds.

Unlike surds: Surds have non - common irrational factors are called "unlike surds".

Ex. $3\sqrt{3}$, $5\sqrt{2}$, $6\sqrt{7}$ etc. are unlike surds.

Type III

Comparison of Surds: (i) If two surds are of the same order, then the one whose radicand is larger, is the larger of the two. **Ex.** $\sqrt[3]{19} > \sqrt[3]{15}, \sqrt{7} > \sqrt{5}, \sqrt[3]{9} > \sqrt[3]{7}$ etc.

(ii) If two surds are distinct order, we change them into the surds of the same order. This order is L.C. M. of the orders of the given surds. **Ex.**: Which is larger $\sqrt{2}$ of $\sqrt[3]{3}$? **Sol.** Given surds are of order 2 & 3 respectively whose L.C.M is 6. Convert each into a surd of order 6, as show below:

$$\sqrt{2} = 2^{\frac{1}{2}} = 2^{\frac{1}{2} \times \frac{3}{3}} = 2^{\frac{3}{6}} = (2^{3})^{\frac{1}{6}}$$
$$= (8)^{1/6} = \sqrt[6]{8}$$
$$= 3^{\frac{1}{3}} = 3^{\frac{1}{3} \times \frac{2}{2}} = 3^{\frac{2}{6}} (9)^{\frac{1}{6}}$$
$$= \sqrt[6]{9}$$
Clearly, $\sqrt[6]{9} > \sqrt[6]{8}$, so $\sqrt[3]{3} > \sqrt{2}$

Type - IV (a) If $y = \sqrt{x + \sqrt{x + \sqrt{x + \cdots \dots \infty}}}$ then, $y = \frac{1 + \sqrt{1 + 4x}}{2}$ Ex.: $y = \sqrt{7 + \sqrt{7 + \sqrt{7 \dots \infty}}}$ Sol. $y = \frac{1 + \sqrt{1 + 4x}}{2}$ Here, x = 7then $y = \frac{1 + \sqrt{1 + 4 \times 7}}{2}$ $= \frac{1 + \sqrt{29}}{2}$ $\therefore \sqrt{29}$ lies between 5 or 6 So, $y = \frac{1 + 5}{2} = 3$ or, $y = \frac{1 + 6}{2} = 3.5$ So, 3 < y < 3.5 is correct.

Type – V

Square - root of an irrational number: As we know that, $(a + b)^2 = (a^2 + b^2) + 2ab$ $\therefore (\sqrt{2} + \sqrt{3})^2 = \underbrace{5}_{(a^{2}+b^2)} + \underbrace{2\sqrt{6}}_{(2ab)}$ $\therefore 5 + 2\sqrt{6} = \underbrace{5 + 2\sqrt{2}\sqrt{3}}_{(2ab)}$ $\therefore a = \sqrt{2} \& b = \sqrt{3}$ $\& a^2 + b^2 = 5$ $\therefore 5 + 2\sqrt{6} = (\sqrt{2} + \sqrt{3})^2$ $\Rightarrow a + b = \sqrt{5 + 2\sqrt{6}} = \sqrt{2} + \sqrt{3}$