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Application of Derivative

 DERIVATIVE  AS  A  RATE  MEASURE
The meaning of differential coefficient can  be
interpreted as rate of change of the dependent
variable with respect to the independent variable,

for example 
dy
dx is the rate of change of y with

respect to x.  Similarly  
dv
dt  and 

ds
dt  etc. represent

the rate of change of  volume and surface area  w.r.t.
time.

Ex.1 Displacement ‘s’  of a particle at time ‘t’ is

expressed as s = 31 t 6t
2

 , find the acceleration at
the time when the velocity vanishes (i.e., velocity
tends to zero).

Sol. s = 31 t 6t
2



Thus velocity, 
2ds 3tv 6

dt 2
 

   
 

and acceleration, 
2

2

dv d sa 3t
dt dt

  

Velocity vanishes when 
23t 6

2
  = 0

 t2 = 4     t = 2
Thus acceleration when velocity vanishes is
a = 3t  = 6 units.

Ex.2 On the curve x3 = 12y, find the interval of values
of x for which the abscissa changes at a faster rate
than the ordinate?

Sol. Given x3 = 12y, differentiating with respect to y

3x2
dx 12
dy



 2

dx 12
dy 3x



The interval in which the abscissa changes at a faster
rate than the ordinate, we must have


dx 1
dy

   or   2

12 1
3x



or 2

4 1
x

 
2

2

4 x 0
x




x ( 2, 2) {0}    .

Thus x (–2, 2) – {0} is the required interval in
which abscissa changes at a faster rate than
the ordinate.
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 GEOMETRICAL INTERPRETATION OF
 THE DERIVATIVE

If y = f(x) be a given function, then the differential

coefficient f' (x) or dy
dx

 at the  point P (x1, y1) is the
trigonometrical tangent of the angle  (say) which
the positive direction of the tangent to the curve at P

makes with the positive direction of x- axis 
dy
dx

F
HG

I
KJ ,

therefore represents the slope of the tangent.
Thus

f' (x) = dy
dx x y

F
HG

I
KJ ( , )1 1

= tan 

y



O
x

Thus
(i) The inclination of tangent with x- axis.

= tan–1 dy
dx

F
HG

I
KJ

(ii) Slope of tangent = dy
dx

(iii) Slope of the normal = – dx/dy

Ex.3 Find the following for the curve y2 = 4x at point
(2,–2)
(i) Inclination of the tangent
(ii) Slope of the tangent
(iii)Slope of the normal

Sol. Differentiating the given equation of curve,
we get dy/dx = 2/y = –1 at (2,–2)
so at the given point.
(i) Inclination of the tangent = tan–1(–1) = 135º
(ii) Slope of the tangent = –1
(iii) Slope of the normal = 1

 EQUATION OF TANGENT
(a) Equation of tangent to the curve y = f(x) at

A (x1,y1) is

y – y1 = dy
dx x y

F
HG

I
KJ ( , )1 1

(x–x1)

(i) If the tangent at P (x1,y1) of the curve y = f(x) is
parallel to the x- axis (or perpendicular to y- axis)
then = 0  i.e. its slope will be zero.

m = 
dy
dx x y

F
HG

I
KJ ( , )1 1

= 0

The converse is also true. Hence the tangent at
(x1,y1) is parallel to x- axis.

dy
dx x y

F
HG

I
KJ ( , )1 1

= 0

(ii) If the tangent at P (x1, y1) of the curve y = f (x) is
parallel to y - axis (or perpendicular to x-axis) then

= / 2 , and its slope will be infinity i.e.

m = 
dy
dx x y

F
HG

I
KJ ( , )1 1

= 

The converse is also true. Hence the tangent at
(x1, y1) is parallel to y- axis

dy
dx x y

F
HG

I
KJ ( , )1 1

= 

(iii) If at any point P (x1, y1) of the curve y = f(x), the
tangent makes equal angles with the axes, then at
the point P, = / 4  or / , Hence at P, tan =
dy/dx = 1. The converse of the result is also true.
thus at (x1,y1) the tangent line makes equal angles
with the axes.

dy
dx x y

F
HG

I
KJ ( , )1 1

= 1

Ex.4 The equation of tangent to the curve y2 = 6x
at (2, – 3).
(A) x + y – 1 = 0 (B) x + y + 1 = 0
(C) x – y + 1 = 0 (D) x + y + 2 = 0

Sol. Differentiating  equation  of  the  curve  with  respect

to x 2y dy
dx

= 6 dy
dx

F
HG

I
KJ ( , )2 3

= 3
3

= –1

Therefore  equation  of  tangent  is
y + 3 = – (x – 2) x + y + 1 = 0    Ans. [B]
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Ex.5 The equation of tangent at any of the curve

x = at2, y  = 2at is -
(A) x = ty + at2 (B) ty + x + at2 = 0
(C) ty = x + at2 (D) ty = x + at3

Sol. dy/dx = (dy/dt)/(dx/dt) = 
2
2
a
at = 1

t
equation of the tangent at (x,y) point is

(y – 2 at) = 1
t
 (x – at2)

ty = x + at2 Ans.[C]
Ex.6 The equation of the tangent to the curve

x2 (x – y) + a2 (x + y) = 0 at origin is-
(A) x + y + 1 = 0 (B) x + y + 2 = 0
(C) x + y  = 0 (D) 2x – y = 0

Sol. The given equation of the curve is
x3 – x2 y  + a2 x + a2 y = 0
Differentiating it w.r.t. x

3x2 – 2xy – x2. dy
dx

+ a2 + a2. dy
dx

= 0

– x2. dy
dx

+ a2 .
dy
dx = – 3x2 + 2xy – a2

Now  at  origin i.e. x = 0, y = 0
 a2 (1 + dy/dx) = 0
dy/dx = –1
 the  equation of  tangent  is

y – 0 = – 1 (x – 0) y = – x x + y = 0   Ans.[C]

Ex.7 If a tangent to the curve x
a

2

2 + y
b

2

2 = 1 is parallel

to x- axis, then its point of contact is-
(A) (a, 0) (B) (0,–b)
(C) (0, b) (D) ( a , 0)

Sol. Differentiating given equation, we have
dy
dx

 = – b x
a y

2

2

If tangent is parallel to x– axis, then

dy/dx = 0  – b x
a y

2

2 = 0 x = 0.

Thus from the given equation y = b
 required point = (0, b) Ans.[C]

Ex.8 For the curve xy = c2, prove that the portion of the
tangent intercepted between the coordinate axes is
bisected at the point of contact.

Sol. Let the point at which tangent is drawn be ( , ) 
on the curve xy = c2.


( , )

dy
dx  

       Thus, the equation of tangent is,

y –   = – (x )


  y x 

 x y 2   
x y 1

2 2
 

 
It is clear that the tangent line cuts x and y-axis at
A( 2 , 0) and B(0, 2 ) and the point ( , )   bisects
AB.

 LENGTH OF INTERCEPTS MADE ON AXES
 BY THE TANGENT

Equation of tangent at any point (x1, y1) to the curve
y = f(x) is

 y– y1 = 
dy
dx x y

F
HG

I
KJ

1 1,b g
(x–x1) ....(1)

Equation of x- axis, y = 0 ....(2)
Equation of y – axis, x = 0 ....(3)

Solving (1) and (2), we get.  x = x1 – 
y

dy
dx x y

1

1 1

F
HG

I
KJ

R

S
||

T
||

U

V
||

W
||,b g

B

O A

P (x1 y1)

X

Y

 x – intercept = OA = x1 – 
y

dy
dx x y

1

1 1

F
HG

I
KJ

R
S
||

T
||

U
V
||

W
||,b g

Similarly solving (1) and (3), we get  y– intercept

OB = y1 – x1
dy
dx x y

F
HG

I
KJ

1 1,b g
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Ex.9 The length of intercepts on coordinate axes made
by tangent to the curve

x + y = a  at the point P (x1, y1) are-
(A) ax ay1 1, (B) a a,

(C) x y1 1, (D) None of these
Sol. x + y = a

So 
dy
dx x y

F
HG

I
KJ

1 1,b g = – y
x
1

1

 x – intercept = x1 – y

y
x

1

1

1

F
HG

I
KJ

R

S
||

T
||

U

V
||

W
||

= x1 + x y1 1 = x1 1 1e j
= ax1        ( x1 + y1 = a )

and y – intercept = y1 – x1

F
HG

I
KJ

y
x
1

1

= y1 + x y1 1 = a y1

Second Method : Equation of tangent at (x1, y1)

y– y1 = – y
x
1

1
(x– x1)

y
1

1
 + 

x
1

1
= 0

x
x1

+ y
y1

= x1 + y1

x
ax1

 + y
ay1

= 1

Obviously x – intercept = ax1

and y – intercept = ay1 Ans. [A]

Ex.10 The length of intercepts on coordinate axes made
by tangent to the curve y = 2x2 + 3x –2 at the point
(1,3) are-
(A) 4, –4/7 (B) –4/7, 4
(C) 4/7, –4 (D) 4/7, 4

Sol. The given equation of curve is
y = 2x2 + 3x – 2

 dy/dx = 4x + 3    
dy
dx

F
HG

I
KJ 1 3,b g = 4.1 + 3 = 7

Now OA = 1–3. (1/7) = 4/7 and OB = 3– 1.7 = –4
 required length of intercepts are 4/7, –4

Here negative sign shows that tangent cuts the
y- axis below the origin. Ans.[C]

 LENGTH OF PERPENDICULAR FROM
 ORIGIN TO THE TANGENT

The length of perpendicular from origin (0,0) to the
tangent drawn at the point (x1, y1) of the curve

y = f(x). p = 

dy
dx

dy
dx

2

1

F
HG

I
KJ

F
HG

I
KJ

Explanation :
The equation of tangent at point P (x1, y1) of the

given curve y – y1 = 
dy
dx P

F
HG

I
KJ (x–x1)

p = perpendicular from origin to tangent

=
dy
dx

dy
dx

2

1

F
HG

I
KJ

F
HG

I
KJ

Ex.10 The length of perpendicular from (0,0) to the
tangent drawn to the curve y2 = 4 (x+2) at point
(2,4) is-

(A) 
1
2 (B) 

3
5

(C) 6
5

(D) 1

Sol. Differentiating the given curve w.r.t x   2y. dy
dx

= 4

at point (2,4) , dy
dx

= 1/2

 p = 

dy
dx

dy
dx

2

1 F
HG

I
KJ

 p = 

1
2

1 1
4

F
HG

I
KJ.

= 
6
5  Ans.[C]
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EQUATION OF NORMAL

The equation of normal at (x1, y1) to the curve
y = f(x) is

(y – y1) = – 1

1 1

dy
dx x y

F
HG

I
KJ ,b g

(x – x1)

or (y–y1) . dy
dx x y

F
HG

I
KJ

1 1,b g
+ (x – x1) = 0

Some facts about the normal
(i) The slope of the normal drawn at point

P (x1,y1) to the curve y = f(x) = – dx
dy x y

F
HG

I
KJ

1 1,b g
(ii) If normal makes an angle of  with positive direction

of x– axis then

– dx
dy

= tan  or dy
dx

= – cot 

(iii) If normal is parallel to x– axis then

– dx
dy

= 0 or dy
dx

= 

(iv) If normal is parallel to y – axis then

– dx
dy

F
HG

I
KJ =  or dy

dx
= 0

(v) If normal is equally inclined from both the axes or
cuts equal intercept then

– dx
dy

F
HG

I
KJ = 1 or 

dy
dx

F
HG

I
KJ = 1

(vi) The length of perpendicular from origin to normal is

P' =

dy
dx

dy
dx

2

1

F
HG

I
KJ

F
HG

I
KJ

(vii) The length of intercept made by normal on

x- axis is = x1 + y1
dy
dx

F
HG

I
KJ

and length of intercept on y - axis is

= y1+ x1
dx
dy

F
HG

I
KJ

Ex.11 The equation of normal at (1, 6) to the curve
y = 2x2 + 3x + 1 is -
(A) x + 7y – 43 = 0 (B) 7x + y – 43 = 0
(C) 7x + y = 0 (D) None of these

Sol. From the given curve
dy
dx

= 4x + 3
dy
dx

F
HG

I
KJ 1 6,b g= 4.1 + 3 = 7 – 

dx
dy

F
HG

I
KJ = – 1

7

 The equation of normal is  y – 6 = – 1
7

(x – 1)

 x + 7 y – 43 = 0 Ans.[A]

Ex.12 The equation of normal to the curve
y = x + sin x cos x at x = / 2  is -
(A) x = / 2 (B) y = / 2

(C) x + y = / 2 (D) x – y = / 2

Sol. At x = / 2 , we get y = / 2

So the point is ( / 2 , / 2 )
Now the equation of curve y = x + sin x. cos x

dy
dx

= 1 + cos2x – sin2 x = 1 + cos 2 x

dy
dx

F
HG

I
KJ / , /2 2b g  = 1 – 1 = 0

 slope of normal =   The equation of normal

 (y – / 2 ) = – 1
0

(x – 
2

)  x = 
2

Ans.[A]

Ex.13 The length of perpendicular from (0,0) to the
normal drawn at point (1,6) to the curve
y = 2x2 + 3x + 1 is-
(A) 1 (B) 1/2
(C) 43/ 50 (D) 1/6

Sol.  P' = 

dy
dx

dy
dx

2

1

F
HG

I
KJ

F
HG

I
KJ

Since dy/dx = 7

P' = . = 43
50

Ans.[C]



74

Application of Derivative
Ex.14 The abscissa of a point where the normal drawn

to the curve xy = (x+ c)2 makes an equal intercept
with coordinate axes is-

(A) 2 c (B) c
2

(C) 3
2

c (D) 3 c

Sol. Differentiating the given curve  w.r.t. x

x dy
dx

+  y = 2(x + c)
dy
dx

 = 
x

2

1x
= 1

and x1y1 = (x1 + c)2

=
2

2

1

1

x
x

b g
= 1

= 
2

1
2x = 1

= 
x

1
2 2

1
2  = 1

x1
2 – c2 = x1

2 x1
2 – c2 = x1

2

    and 2x1
2 – c2 = 0

 2x1
2 = c2  x1 = 

c
2    Ans.[B]

Ex.15 The coordinate of a point to the curve
y = x log x where the normal is parallel to line 2x –
2y = 3 is -
(A) e–2, – 2e–2 (B) – 2e–2, e–2

(C) e–2, e–2 (D) None of these
Sol. Differentiating the equation of line

2– 2dy/dx = 0
dy/dx = 1

 slope of tangent = – 1
 – 1 = 1 + log x,  log x = – 2  x = e–2

  y = e–2 log e–2

     y = –2 e–2

 point is (e–2 , – 2e–2 )    Ans.[A]

Ex.16 Find the equation of normal to the curve
x + y = xy, where it cuts the x-axis.

Sol. Given curve is  x + y = xy

at x-axis y = 0,
x + 0 = x0    x = 1
Now to differentiate x + y = xy, take log on both
sides
 ln(x + y) = y ln x


1 dy 1 dy1 y (ln x)

x y dx x dx
      

Putting x = 1, y = 0, we get

dy1 0
dx

   
  

(1,0)

dy 1
dx

   
 

 slope of normal = 1
Equation of normal is,

y 0 1
x 1



    y = x – 1.

 ANGLE OF INTERSECTION OF
 TWO CURVES

Let y = f(x) and y = g(x) be two given intersecting
curves. Angle of intersection of these curves is defined
as the acute angle between the tangents that can be
drawn to the given curves at the point of intersection.
Let (x1 , y1) be the point of intersection.

 1 1 1y f (x ) g(x ) 

Slope of the tangent drawn to the curve y = f(x) at

(x1, y1)   i.e., m1 = 
1 1(x ,y )

df
dx

 
 
 

Similarly slope of the tangent drawn to the curve

y = g(x) at (x1, y1)   i.e., m2 = 
1 1(x , y )

dg
dx

 
 
 

If   be the angle (acute) of intersection, then tan

= 
1 2

1 2

m m
1 m m


 .
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If   = 0, then m1 = m2 . Thus the given curves will
touch each other at (x1 , y1).

If 2


 , then m1 m2 = –1. Thus the given curves
will meet at right angles at (x1, y1) (or curves cut
each other orthogonally at (x1, y1)).

Ex.17 Find the acute angle between the curves
y = |x2 – 1| and y = |x2 – 3| at their points of
intersection.

Sol.

The points of intersection are ( 2,1)

Since the curves are symmetrical about y-axis,
 the angle of intersection at  ( 2,1)
=  the angle of intersection at ( 2 , 1).
At   ( 2 , 1), m1 =2x = 2 2 , m2 = –2x = –2 2 .


14 2 4 2 4 2tan tan

1 8 7 7
   



Ex.18 The angle of intersection between the curves y
=x and y2 = 4x at (4,4).

(A) tan–1 1
2

F
HG

I
KJ (B) tan–1 1

3
F
HG

I
KJ

(C) 
4

(D) 
2

Sol. Differentiating given equations, we have
dy
dx

F
HG

I
KJ 1= 1 and 

dy
dx

F
HG

I
KJ 2  = 2/y

 at (4,4) 
dy
dx

F
HG

I
KJ 1= 1 

dy
dx

F
HG

I
KJ 2 = 2/4 = 1/2

Hence angle of intersection

= tan–1
1 1

2
1
2

F
HG

I
KJ

 = tan–1 (1/3). Ans. [B]

Ex.19 The condition that the curves x
a

2

2 – y
b

2

2 = 1 and

xy = c2 mutually intersect orthogonally is -
(A) a2 + b2  = 0 (B) a2 = b2

(C) a2 – b2 = 0 (D) a
b

2

2 = 1

Sol. The given curves are

x
a

2

2  – y
b

2

2  = 1 ... (1)

 and xy = c2 ... (2)

from (1), 
dy
dx

F
HG

I
KJ 1  = 

b x
a y

2

2  and

from (2) , 
dy
dx

F
HG

I
KJ 2= – y/x

(1) and (2) intersect orthogonally if

dy
dx

F
HG

I
KJ 1

dy
dx

F
HG

I
KJ 2  = – 1

b x
a y

2

2

F
HG

I
KJ

F
HG

I
KJ

y
x  = – 1

 a2 = b2 which is the required condition .
 Ans. [B]

 LENGTHS OF THE TANGENT, NORMAL,
 SUB-TANGENT AND SUB-NORMAL AT
 ANY POINT OF A CURVE

Let the tangent and the normal at any point (x, y) of
the curve y = f(x) meet the x-axis at T and G
respectively. Draw the ordinate PM.
Then the lengths TM, MG are called the sub-tangent
and sub-normal respectively.
The lengths PT, PG are sometimes referred to as
the lengths of the tangent and the normal respectively.

Clearly MPG 

Also dytan
dx

 
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From the figure, we have

(i) Length of Tangent

= TP = MP |cosec | = 2| y | (1 cot ) 

= 

2
dx| y | 1
dy

  
  

   

(ii) Length of Sub-tangent = TM = MP |
dxcot | | y |
dy

 

(iii) Length of Normal   = GP = MP |sec |

= 2| y | (1 tan ) 

2dy| y | 1
dx

        

(iv) Length of Sub-normal = MG = MP| dytan | | y |
dx

 

Ex.20 Find the equation of family of curves for which the
length of normal is equal to the radius vector.

Sol. Let P(x, y) be the point on the curve.

OP = radius vector = 2 2x y

PN = length of normal

Now,  1tan
dy
dx


 
 
 


yPN

sin




It is given OP = PN


2

2 2 dyx y y 1
dx

     
 



2
2 2 2 dyx y y 1

dx
      

   

 x2 = y2

2dy
dx

 
 
 


dy x
dx y



 ydy =   x dx integrating both sides,

y2 =  x2 + c is the required family of curves.

Ex.21 Find the length of tangent, subtangent,
normal and subnormal at the point  (2,4) of the
curve y2 = 8x.

Sol. Differentiating the equation of the curve w.r.t. x,
we get

2y dy
dx

= 8 dy/dx = 8/2y = 4/y

dy
dx

F
HG

I
KJ 2 4,b g = 4/4 = 1

Therefore  at the point (2,4):

length of tangent = 
1

2b g
 = 4 2

length of sub tangent = 4/1 = 4

length of normal = 2b g = 4 2

length of sub normal = 4.1 = 4

Ex.19 Find the length of tangent, sub-tangent,
normal and sub-normal at the point  of the curve x
= a ( + sin ), and y = a(1–cos ).

Sol. 
dy
dx

F
HG

I
KJ  = 

dy d
dx d

/
/

b g
b g  = 

a
a

sin
cos1b g

dy
dx

 = 
dy
dx

 = tan 
2
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 length of tangent

= 
2

b g

= 
2

2
2

= a. sin / 2

length of normal

= a (1–cos) 

= a.2 sin2 / 2 . sec  / 2

length of sub tangent

= 
a 1

2
cosb g

 = 2
2

= a sin 

length of sub normal = a (1–cos ) tan /2 = 2a
sin2 /2 tan /2

 POINT OF INFLEXION
If at any point P, the curve is concave on one side
and convex on other side with respect to x- axis,
then the point P is called the point of inflexion. Thus
P is a point of inflexion if at P,

d y
dx

2

2 = 0 , but 
d y
dx

3

3 0

Also point P is a point of inflexion if f" (x) = f"'(x)
= ... = f n–1(x) = 0 and fn (x) 0 for odd n.

Ex.20 Prove that origin for the curve y = x3 is a point of
inflexion.

Sol.  y = x3

dy
dx

 = 3x2 , d y
dx

2

2  = 6x, 
d y
dx

3

3  = 6

clearly at (0,0)

d y
dx

2

2 = 0 and d y
dx

3

3 0

 There is a point of inflexion at (0, 0).

 ROLLE'S THEOREM

If a function f defined on the closed interval [a, b], is

(i) Continuous on [a, b],

(ii) Derivable on (a, b) and

(iii) f(a) = f(b), then there exists atleast one real number
c between a and b (a < c < b) such that f'(c) = 0

Geometrical interpretation

Let the curve y = f(x), which is continuous on [a, b]
and derivable on (a, b), be drawn.

The theorem states that between two points with
equal ordinates on the graph of f, there exists atleast
one point where the tangent is parallel to x-axis.

Algebraic interpretation

Between two zeros a and b of f (x) (i.e., between
two roots a and b of f(x) = 0) there exists atleast
one zero of f'(x).

Ex.21 Let f(x) = x2 – 3x + 4. Verify Rolle’s theorem in
[1, 2].

Sol. f(1) = f(2) = 2

Now, f (x)  = 0   2x – 3 = 0


3x
2

 (1, 2 ) .

Hence, Rolle’s theorem is verified.
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Ex. 22 Let f(x) = (x – a) (x – b)(x – c), a < b < c, show

that f (x)  = 0 has two roots one belonging to (a, b)
and other belonging to (b, c).

Sol. Here, f(x) being a polynomial is continuous and
differentiable for all real values of x. We also have
f(a) = f(b) = f(c). If we apply Rolle’s theorem to f(x)
in [a, b] and [b,c] we would observe that f (x) = 0
would have at least one root in (a, b) and at least
one root in (b, c). But f (x)  is a polynomial of degree

two, hence f (x)  = 0 can not have more than two
roots. It implies that exactly one root of f (x) = 0

would lie in (a, b) and exactly one root of f (x)  = 0
would lie in (b, c).

Remarks:
Let y = f(x) be a polynomial function of degree n.
If f(x) = 0 has real roots only, then f (x) = 0,

f (x) = 0, ... , f n–1(x) = 0 would have only real
roots. It is so because if f(x) = 0 has all real roots,
then between two consecutive roots of f(x) = 0,
exactly one roots of f (x) = 0 would lie.

Ex.23 Prove that if a0, a1, a2, ..., an are real numbers

such that  0 1 n 1
n

a a a... a 0
n 1 n 2

    


 then there
exists at least one real number x between 0 and 1
such that a0x

n + a1x
n–1 + a2 x

n–2 + ... + an = 0,
Sol. Consider a function f defined as

f(x) = n 1 n 20 1 n 1
n

a a ax x ... x a x, x [0,1]
n 1 n 2

     


f  being a polynomial satisfies the following conditions.
(i) f is continuous in [0, 1]
(ii) f is derivable in (0, 1)
(iii) Since f(0) = 0 and f(1) = 0 by hypothesis,
  f(0) = f(1)
Hence there is some x(0, 1) such that f  (x) = 0


n n 10 1 n 1

n
a a a(n 1) x nx ... .2x a 0

n 1 n 2
      


 a0x

n + a1x
n–1 + ..... + n 1 na x a 0  

 LAGRANGE'S MEAN VALUE THEOREM
If a function f defined on the closed interval [a, b], is

(i) Continuous on [a, b] and
(ii) Derivable on (a, b), then there exists atleast one real

number c between a and b (a < c < b) such that

f'(c) = ab
)a(f)b(f




Geometrical interpretation
The theorem states that between two points A and
B on the graph of f there exists atleast one point
where the tangent is parallel to the chord AB.

Ex. 24 If f(x) and g(x) be differentiable functions in
(a, b), continuous at a and b and g(x)   0 in [a, b],
then prove that

2
g(a)f (b) f (a)g(b) (b a)g(a) g(b)
g(c) f (c) f (c)g (c) g(c)

 


 

for atleast one c (a, b) .

Sol. We have to prove (after rearranging the terms)

2

f (b) f (a)
g(c) f (c) f (c)g (c)g(b) g(a)

(b a) (g(c))


 




Let F(x) = 
f (x)
g(x)

As f(x) and g(x) are differentiable function in (a, b),
F(x) will also be differentiable in (a, b). Further F is
continuous at a and b. So according to LMVT, there

exist one c (a, b)  such that 
F(b) F(a)F (c)

b a
 


,

which proves the required result.
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Ex. 25 If the function f : [0, 4]   R is differentiable,

then show that, (f (4))2 – (f(0))2 = 8 f  (a) f (b) for
some a, b  (0, 4)

Sol. Since, f is differentiable   f is continuous also.
Thus by Lagrange’s mean value theorem, a (0, 4)
such that

f (4) f (0) f (4) f (0)f (a)
4 0 4
   


... (1)

Also, by Intermediate value theorem there exists
b(0, 4) such that

f(b) = 
f (4) f (0)

2


... (2)
2 2(f (4)) (f (0))f (a)f (b)

8
 

  (f(4))2 – (f(0))2 = 8f (a) f (b)
for some a, b (0, 4).

Ex. 26 If f(x) is continuous in [a, b] and differentiable in
(a, b) then prove that there exists atleast one

c (a,b)  such that 2 3 3

f (c) f (b) f (a)
3c b a
 




.

Sol. We have to prove
(b3 – a3) f (c)  – (f(b) – f(a)) (3c2) = 0
Let us assume a function
F(x) = (b3 – a3) f(x) – (f(b) – f(a)) x3

which will be continuous in [a, b] and differentiable
in (a, b) as f(x) and x3 both are continuous.
Also F(a) = b3f(a) – a3 f(b) = F(b)
So, according to Rolle’s theorem, there exists atleast
one c (a, b)  such that, F (c) 0  , which proves
the required result.

 MONOTONICITY
INTRODUCTION

In this chapter, we shall study the nature of a function
which is governed by the sign of its derivative. If the
graph of a function is in upward going direction or in
downward coming direction then it is called as
monotonic function, and this property of the function
is called Monotonicity. If a function is defined in
any interval, and if in some part of the interval, graph
moves upwards and in the remaining part moves
downward then function is not monotonic in that
interval.

1. Increasing Function
f(x) is said to be increasing in D1 if for every

x1, x2 1D ,

1 2 1 2x x f (x ) f (x )  

It means that there is a certain increase in the value

of f(x)            

with an increase in the value of x (Refer to the
adjacent figure).

2. Non-Decreasing Function
f(x) is said to be non-decreasing in D1 if for every

x1, x2 1D ,
x1 > x2  f(x1)   f(x2). It means that the value of
f(x)
would never decrease with an increase in the value

of x              

(Refer to the adjacent figure).

3. Decreasing Function
f(x) is said to be decreasing in D1

if for every x1, 2 1x D , x1 > x2     f(x1) < f(x2)

it means that there is a certain decrease

in the value of f(x) with an increase in the value of x
(Refer to the adjacent figure).
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4. Non-increasing Function

f(x) is said to be non-increasing in D1

if for every x1. x2
D1, x1 > x2    f(x1)   f(x2).

It means that the value of f(x) would
never increase with an increase in the value of x

(Refer to the adjacent figure).

NOTE :
If x1 < x2  f(x1) < f(x2)  x1, x2  D, then f(x) is
called strictly increasing in domain D.

Similarly if x1 < x2 f(x1) > f(x2),  x1, x2 D then
it is called strictly decreasing in domain D.

For Example
(i) f(x) = ex is a monotonic increasing function where as

g(x) = 1/x is monotonic decreasing function.
(ii) f(x) = x2 and g(x) = | x | are monotonic increasing

for x > 0 and monotonic decreasing for x < 0.
In general they are not monotonic functions.

(iii) Sin x, cos x are not monotonic function whereas tan
x, cot x are monotonic.

 METHOD OF TESTING MONOTONICITY
(i) At a Point : A function f(x) is said to be monotonic

increasing (decreasing) at a point x = a of its domain
if it is monotonic increasing (decreasing) in the interval
(a – h, a + h) where h is a small positive number.
Hence we may observe that if f(x) is monotonic
increasing at x = a, then at this point tangent to its
graph will make an acute angle with the x–axis where
as if the function is monotonic decreasing these
tangent will make an obtuse angle with x–axis.
Consequently f' (a) will be positive or negative
according as f(x) is monotonic increasing or
decreasing at x = a.

So at x = a , function f(x) is
Monotonic increasing  f' (a) > 0
Monotonic deacreasing  f' (a) < 0

Ex. The function f(x) = cosx is decreasing at
 x = /3 and increasing at x = 4/3 since
f'(/3) = 3 2/  < 0
and f'(4/3) = 3 2/  > 0

(ii) In an interval : A function f(x) defined in the intervel
[a, b] will be
Monotonic increasing f'(x)0
Monotonic decreasing f'(x)0
Constant f'(x)=0 x  (a,b)
Strictly increasing f'(x)>0
Strictly decreasing f''(x)<0
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NOTE :
(i)  In the above result f'(x) should not be zero for all

value of x otherwise f(x) will be a constant function.
(ii) If in [a, b], f'(x) < 0, for atleast one value of x and

f'(x) > 0 for atleast one value of x then f(x) will not
be monotonic in [a, b].

Ex. Function f(x) = sin x is monotonic increasing in
[ 0, /2] because
f' (x) = cos x > 0  x  (0 , /2)

Ex. Function f(x) = e–x is nonotonically decreasing in
[ –1, 0], since
f' (x) = – e–x < 0,  x  (–1, 0)

Ex. Function f(x) = x2 + 1 is monotonically decreasing
in [ –1, 0] because
f' (x) = 2x < 0,  x  (–1, 0)

Ex. Function f(x) = x2 is not a monotonic function in the
interval [–1, 1] because
f' (x) > 0, when x = 1/2
f' (x) = 2x 
f' (x) < 0, when x = –1/2

Ex. Function f(x) = sin2x + cos2x is constant function in
[ 0, /2] because
f'(x) = 2sin x cos x–2sinx cos x = 0  x  (0, /2)

 EXAMPLES OF MONOTONIC FUNCTION
If a function is monotonic increasing (decreasing) at
every point of its domain, then it is said to be
monotonic increasing(decreasing) function.
In the following table we have examples of some
monotonic / not monotonic functions.
Monotonic Monotonic Not
Increasing Decreasing Monotonic
x3 1/x x2

x | x | 1 – 2x             | x |
ex e– x ex + e–x

loga x,a >1 loga x, a < 1 sin x
tan x cot x cos x
sinh x cosech x cosh x
[ x ] coth x              sech x

 PROPERTIES OF MONOTONIC
 FUNCTIONS

(i) If f(x) is strictly increasing in some interval, then in
that interval, f' exists and that is also strictlly
increasing function.

(ii) If f(x) is continuous in [a, b] and differentiable in (a,
b), then
f' (c)  0  c  (a, b)    f(x) is monotonic
                                        increasing in [a, b]
f' (c)  0  c  (a, b)   f(x) is monotonic
                                        decreasing in [a, b]

(iii) If both f(x) and g(x) are increasing (or decreasing)
in [a,b] and gof is defined in [a, b] then gof is
increasing.

(iv) If f(x) and g(x) are two monotonic functions in [a, b]
such that one is increasing and other is
decreasing then gof, if it is defined, is decreasing
function.

Ex. 27
(i) Find the critical points and the intervals of increase

and decrease for f(x) = 3x4 – 8x3 – 6x2 + 24x + 7.
(ii) Find the intervals of monotonicity of the following

functions:
(a)  f(x) = x4 – 8x3 + 22x2 – 24x + 7
(b) f(x) = x ln x

Sol.
(i) f(x) = 3x4 – 8x3 – 6x2 + 24x + 7

f (x) = 12x3 – 24x2 – 12x + 24 = 0

sign scheme for f (x) :
  12(x3 – 2x2 – x + 2) = 0

  12(x – 1) (x – 2) (x + 1) = 0

Critical points are –1, 1 and 2.
The wavy curve of the derivative is given in the figure.
Hence function increases in the interval [–1, 1]
 [2,  ) and
decreases in the interval (– , –1] [1, 2].
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(ii) (a) we have

f(x) = x4 – 8x3 + 22x2 – 24x + 7, xR 
3 2f (x) 4x 24x 44x 24 4(x 1)(x 2)(x 3)        

From the sign scheme for f  (x), we can see
that f(x)
decreases in (– , 1] increases in [1, 2]
decreases in [2, 3] and increases in [3,  ).

(b)  we have  f(x) = x ln x , x > 0
 f  (x) = lnx + 1 < 0 1x e 
   f(x) decreases in (0, e–1] increases in [e–1,  ).

Ex. 28 Prove the following inequalities :

(a) ln(1 + x) > x – 
2x x (0, )

2
  

(b) sin x   x   tan x x 0,
2
   

 
Sol. (a)Consider the function

f(x) = ln (1 + x) – x + 
2x , x (0, )

2
 

Then 
21 xf (x) 1 x 0 x (0, )

1 x 1 x
        

 
 f(x) increases in (0,  )     f(x) > f(0+) = 0

i.e., ln(1 + x) > x – 
2x

2
 which is the desired result.

(b) Consider the function

f(x) = tanx – x, x 0,
2
  

 

f (x) = 2sec x 1 0 x 0,
2
     

 

Thus f(x) increases in 0,
2
 

 
 

  f(x)   f(0) = 0 i.e., tanx   x
Now, consider the function , g(x) = x –sin x,

x 0,
2
 

 
 

Then g (x)  = 1 – cosx = 2 sin2

x 0 x 0,
2 2

        
   

 g(x) increases in 0,
2
 

 
 

  g(x)   g(0) = 0

i.e.,      sinx   x

Ex.29 Function f(x) = x – sin x is inceresing, when -
(A)  < 1 (B)  > 1
(C)  = 0 (D) None of these

Sol. f'(x) =  – cos x
Now function f(x) is increasing, if
f'(x) > 0   – cos x > 0
If  > 1, then  – cos x is always positive.
Therefore f(x) in increasing when  > 1.

Ans.[B]
Ex.30 Function f(x) = cos x – 2x is decreasing when -

(A)  > 1/2 (B)  < 1/2
(C)  < 2 (D)  > 2

Sol. f(x) is monotonic decreasing when
f' (x) < 0  x
 –sinx – 2 < 0
 2 > – sin x
  2 > 1
  > 1/2
( maximum value of – sin x = 1) Ans.[A]

Ex.31 In which interval the function f(x) =
2x3 – 15x2 + 36x + 1 is monotonically decreasing-
(A) (2, 3) (B) (– , 2)
(C) (3, ) (D) None of these

Sol. f' (x) = 6x2 – 30x + 36 = 6(x – 2) (x  – 3)
Since f(x) is decreasing f'(x) < 0
 (x – 2) (x – 3) < 0
 x – 2 > 0 and x – 3 < 0
or x – 2 < 0 and x – 3 > 0
 x > 2 and x < 3
or x < 2 and x > 3
Here x < 2 and x > 3 is not possible.
Hence x > 2 and x < 3
 x  (2, 3) Ans.[A]

Ex.32 In which interval the function f(x) = x2 – x + 1 is
not a monotonic function –
(A) (0, 1/2) (B) (1/2, )
(C) (0, 1) (D) None of these
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Sol. Here f'(x) = 2x –1

Obviously f(x) is monotonic decreasing function in
the interval (0, 1/2) (since x < 1/2  2x – 1 < 0) and
is monotonically increasing in the interval (1/2, 1)

Thus the function is neither a decreasing function nor
an increasing function in (0, 1) Ans.[C]

Ex.33 In the interval (1, 2), function

 f(x) = 2 |x – 1| + 3| x – 2| is –

 (A) Monotonic increasing

 (B) Monotonic decreasing

 (C) Not monotonic
 (D) Constant

Sol. x  (1, 2)

 f(x) = 2(x –1) – 3(x – 2) = –x + 4

 f'(x) = –1 < 0  x

 f(x) is monotonic decreasing in (1, 2) Ans.[B]

Ex.34 The function f(x) = [x(x –3)]2 is increasing when –

 (A) 0 < x <  (B) –  < x < 0

 (C) 0 < x < 3/2 (D) 1 < x < 3

Sol. We have

f(x) = [x(x –3)]2

f'(x) = 2x(x – 3) [ (x – 3) + x ]

= 2x (x –3) (2x – 3)

If f(x) is an increasing function, then

f'(x) > 0  x(x –3) (2x – 3) > 0

 0 < x < 3/2 or x > 3 Ans.[C]

 MAXIMUM & MINIMUM POINTS

The value of a function f (x) is said to be maximum
at x = a, if there exists a very small positive number
h, such that

f(x) < f(a)  x  (a – h,a + h) , x a

In this case the point x = a is called a point of maxima
for the function f(x).

Y

O

f(a)

Increasing
f(b)

f(b+h)

a–h a+h
f(b–h)

(b–h)
b b+h

f(a–h)

decreasing

Increasing

f(a+h)

a

(i) x = a is a maximum point of f(x)
RST

0
0

(ii) x = b is a minimum point of f(x)
RST

0
0

(iii) x = c is neither a maximum point nor a
minimum point
f c f c h
and
f c f c h

( ) ( )

( ) ( )

 

  

R
S|
T|

U
V|
W|0

 have opposite signs.

Note :
(i) The maximum and minimum points are also known

as extreme points.
(ii) A function may have more than one maximum and

minimum points.
(iii) A maximum value of a function f(x) in an interval

[a,b] is not necessarily its greatest value in  that
interval. Similarly, a minimum value may not be the
least value of the function. A minimum value may be
greater than some maximum value for a function.

(iv) If a continuous function has only one maximum
(minimum) point, then at this point function has its
greatest (least) value.

(v) Monotonic functions do not have extreme points.
Ex. Function y = sin x, x  (0, ) has a maximum point

at x = /2 because the value of sin /2 is greatest
in the given interval for sin x.
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Clearly function y = sin x is increasing in the interval
(0, /2) and decreasing in the interval
( /2, ) for that reason also it has maxima at
x = /2. Similarly we can see from the graph of cos
x which has a minimum point at x = .

Ex. f(x) = x2 , x  (–1,1) has a minimum point at x = 0
because at x = 0, the value of x2 is 0, which is less
than the all the values of function at different points
of the interval.

Clearly function y = x2 is decreasing in the interval
(–1, 0) and increasing in the interval (0,1) So it has
minima at  x = 0.

Ex. f(x) = |x| has a minimum point at x = 0. It can be
easily observed from its graph.

 CONDITIONS FOR MAXIMA &
 MINIMA OF A FUNCTION

A. Necessary Condition : A point x = a is an
extreme point of a function f(x) if f’(a) = 0, provided
f’(a) exists.  Thus if f’ (a) exists, then
x = a is an extreme point  f’(a) = 0

or
f’ (a)  0  x = a is not an extreme point.
But its converse is not true i.e.
f’ (a) = 0  x = a is an extreme point.
For example if f(x) = x3 , then f’ (0) = 0 but
x = 0 is not an extreme point.
B. Sufficient Condition :

(i) The value of the function f(x) at x = a is maximum, if
f’ (a) = 0 and f” (a) < 0.

(ii) The value of the function f(x) at x = a in minimum if f’
(a) = 0 and f” (a) > 0.

Note:
(i) If f’ (a) = 0, f” (a) = 0, f”’ (a) 0 then x = a is not an

extreme point for the function f(x).
(ii) If f’(a) = 0, f” (a) = 0, f”’ (a) = 0 then the sign of f(iv)

(a) will determine the maximum and minimum value
of  function i.e. f(x) is maximum, if f (iv) (a) < 0 and
minimum if f(iv) (a) > 0.

Tests for Local Maxima/Minima
I. Test for Local Maximum/Minimum at x = a if

f(x) is Differentiable at x = a.
If f(x) is differentiable at x = a and if it is a critical
point of the function (i.e., f (a)  = 0) then we
have the following three tests to decide whether
f(x) has a local maximum or local minimum or
neither at x = a.

First Derivative Test :

If f (a) = 0 and f (x)  changes it’s sign while passing
through the point x = a, then

(i) f(x) would have a local maximum at x = a if
f (a 0)  > 0 and f (a 0)   < 0. It  means that

f (x)  should change it’s sign from positive
to negative.

(ii) f(x) would have a local minimum at x = a if f (a 0) 

< 0 and f (a 0)   > 0. It means that

f (x)  should change it’s sign from negative to
positive.

(iii) If f(x) doesn’t change it’s sign while passing through
x = a, then f(x) would have neither a
maximum nor a minimum at x = a.

Second Derivative Test:
This test is basically the mathematical representation
of the first derivative test. It simply says that,

(i) If f (a)  = 0  and f (a) 0,   then f(x) would have a
local maximum at x = a.

(ii) If f (a) = 0 and f (a) 0,   then f(x) would have a
local minimum at x = a.
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(iii) If f (a) = 0 and f (a) 0,   then this test fails

and the existence of a local maximum/minimum
at x = a is decided on the basis of the nth
derivative test.

nth Derivative Test

It is nothing but the general version of the second
derivative test, It  says that if,

n n 1f (a) f (a) f (a) ....f (a) 0 and f (a) 0      
(all derivatives of the function up to order n
vanishes and (n + 1)th order derivative does not
vanish at x = a), then f(x) would have a local
maximum or local minimum at x = a if n is odd natural
number and that x = a would be a point of

local maxima if f n+1 (a) < 0 and would be a point of
local minima if f n+1 (a) > 0. However if n is
even, then f has neither a maxima nor a minima at  x = a.

It is clear that the last two tests are basically the
mathematical representation of the first derivative

test. But that shouldn’t diminish the importance of
these tests. Because at that times it becomes

very difficult to decide whether f (x)  changes it’ss

sign or not while passing through point x = a,
and the remaining tests may come handy in these
kind of situations.

Ex.35 Find the points of maxima and minima for the
function f(x) = x3 – 9x2 + 15 x – 11.

Sol. Let f(x) = x3 – 9x2 + 15 x – 11

thenf’(x) = 3x2 – 18x + 15 = 3(x2 – 6x + 5)

For maxima and minima

 f’(x) = 0 x2 – 6x + 5 = 0

 (x–1) (x – 5) = 0 x = 1,5

Again f” (A) = – 12 < 0

 x = 1 is a point of maxima

and f” (5) = 12 > 0

x = 5 is a point of minima Ans.

Ex.36 Determine maximum and minimum points of sin x.
Sol.  Let f(x) = sin x, then

 f’(x) = cos x , f” (x) = – sin x
 Now f’ (x) = 0  cos x = 0
x = /2,  3 /2, ......
Also f” ( /2) = –1 < 0 x = /2 is a maximum point
f”(– /2) = 1>0 x = – /2 is minimum point
f” (3 /2) = 1>0 x = 3 /2 is a minimum point
f”(–3 /2) = –1< 0 x = – 3 /2 is a maximum point.
Thus we shall find that-
x = /2 , 5 /2,..... – 3 /2,–7 /2 are maximum
points and
x = 3 /2 , 7 /2,..... – /2,– 5 /2 are minimum
points. Ans.

Ex.37 Find the maximum value of x5–5x4+5x3 – 10.
Sol. Let f(x) = x5 – 5x4 + 5x3 – 10

f’ (x) = 5x4 – 20 x3 + 15x2

f” (x) = 20x3 – 60 x2 + 30 x
Now f’(x) = 0  5x2 (x2 – 4x + 3) = 0

 x = 0 ,1, 3
But f” (0) = 0, f”’ (0) 0

 x = 0 is not an extreme point
Also f” (1) = 20 – 60 + 30 = – 10 < 0

 f(1) is max. value and maximum value is
= 1 – 5 + 5 – 10 = – 9 Ans.

Ex.38 Let f(x) = x + 
1 , x 0
x

 . Discuss the maximum
and minimum values of f(x).

Sol. Here, f  (x) = 1 – 2
1
x 

2

2 2

x 1 (x 1)(x 1)f (x)
x x
    

 sign scheme for f (x) :

Using number line rule, we have maximum at x = –1
and minimum at x = 1
  at x = –1 we have local maximum     fmax(x)  = – 2
and  at x = 1 we have local minimum       fmin(x) = 2
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II. Test for Local Maximum/Minimum at x = a if

f(x) is not differentiable at x = a
Case 1 :

When f(x) is continuous at x = a and f  (a – h) and
f  (a + h) exist and are non-zero, then
f(x) has a local maximum or minimum at x = a if f  (a
– h) and f  (a + h) are of opposite signs.
If f  (a – h) > 0 and f  (a + h) < 0 then x = a will be
a point of local maximum.

If f  (a – h) < 0 and f  (a + h) > 0 then x = a will be
a point of local minimum.

Case 2:
When f(x) is continuous and f  (a – h) and f  (a + h)
exist but one of them is zero, we
should infer the information about the existence of
local maxima/minima from the basic definition of
local maxima/minima.

Case 3:
If f(x) is not continuous at x = a and f  (a – h) and/or
f  (a + h) are not finite, then compare the values of
f(x) at the neighboring points of x = a.

Remark:
It is advisable to draw the graph of the function in
the vicinity of the point x = a because
the graph would given us the clear picture about the
existence of local maxima/minima at x = a.

Ex.39Let f(x) = 
3 2x x 10x, x 0

3sin x, x 0
   


 
. Investigate x

= 0 for local maxima/ minima.
Sol. Clearly f(x) is continuous at x = 0 but not

differentiable at x = 0 as f(0) = f(0 – 0) = f (0 + 0) = 0

h 0

f ( h) f (0)f (0) lim
h 

  


3 2

h 0

h h 10h 0lim
h

   



 = 10

But 
h 0 h 0

f (h) f (0) 3sinhf (0) lim lim 3
h h  

     

Since f (0) 0  and f (0) 0, x 0   is the point of
local maximum.

 CONCEPT OF GLOBAL
 MAXIMUM MINIMUM

Let y = f(x) be a given function with domain D. Let
[a, b]D. Global maximum/minimum of f(x) in
[a, b] is basically the greatest/least value of f(x) in
[a, b].
Global maximum and minimum in [a, b] would always
occur at critical points of f(x) within [a, b] or
at the end points of the interval, if f is continuous in
[a, b].

I. Global Maximum/Minimum in [a, b]
In order to find the global maximum and minimum
of a continuous function f(x) in [a, b], find out all
the critical points of f(x) in (a, b). Let c1, c2, ... ,
cn be the different critical points. Find the value
of the function at these critical points. Let f(c1),
f(c2), .... , f(cn) be the values of the function at
critical points.
Say,  M1 = max {f(a), f(c1), f(c2), .... , f(cn) , f(b)}
and M2 = min {f(a), f(c), f(c2), ..., f(cn), f(b)}
Then M1 is the greatest value of f(x) in [a, b] and M2
is the least value of f(x) in [a, b].

II. Global Maximum/Minimum in (a, b)
Method for obtaining the greatest and least values
of f(x) in (a, b) is almost same as the method
used for obtaining the greatest and least values in [a,
b] however with a caution.
Let y = f(x) be a continuous function and c1, c2 ... c3
be the different critical points of the function
in (a, b).
Let M1 = max. {f(c1), f(c2), f(c3) .... f(cn)}
and M2 = min {f(c1), f(c2), f(c3) ... f(cn)}

Now if x a 0
(or x b 0)

lim
 
 

f(x) > M1 or < M2 , f(x) would not
have global maximum (or global minimum) in  (a, b).
This means that if the limiting values at the end points
are greater than M1 or less than M2, then f(x)
would not have global maximum/minimum in (a, b).

On the other hand if M1 > x a 0
(and x b 0)

lim
 

 
f(x) and

M2 < x a 0
(and x b 0)

lim
 

 
f(x), then M1 and M2 would

respectively be the global maximum and global
minimum of f(x) in (a, b).
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Ex.40 let f(x) = 2x3 – 9x2 + 12x + 6. Discuss the global
maximum and minimum of f(x) in [0, 2] and
in (1, 3).

Sol. f(x) = 2x3 – 9x2 + 12x + 6
 f (x)  = 6x2 – 18x + 12 = 6 (x2 – 3x + 2) = 6
(x – 1) (x– 2)
First of all let us discuss [0, 2].
Clearly the critical point of f(x) in [0, 2] is x = 1.
f(0) = 6, f(1) = 11, f(2) = 10
Thus x = 0 is the point of global minimum of f(x) in
[0, 2] and x = 1 is the point of global maximum.
Now let us consider (1, 3)
Clearly, x = 2 is the only critical point in (1, 3),

f(2) = 10 , x 1 0
lim f (x)
 

= 11 and  x 3 0
lim f (x)
 

 = 15
Thus x = 2 is the point of global minimum in (1, 3)
and the global maximum in (1, 3) does not exist.
Greatest & least value in an interval

Ex.41 Find the greatest value of x3 – 12x2 + 45 x in the
interval [0, 7].

Sol. Let f(x) = x3 – 12x2 + 45 x, then
f’ (x) = 3x2 – 24 x + 45
= 3 ( x– 3) ( x– 5) and f” (x) = 6x – 24
Now for maximum and minimum values
 f’ (x) = 0  3 (x – 3) ( x – 5) = 0

 x = 3,5
Again f” (3) = – 6 < 0 The function if maximum
at x = 3 and f” (5) = 6 > 0

 The function is minimum at x = 5
Now f (0) = 0, f(3)= 54, f(5) = 50, f(7) = 70

 The greatest value in [0,7]
= max. {0,54, 50, 70} = 70 Ans.

 PROPERTIES OF
 MAXIMA & MINIMA

If f (x) is a continuous function and the graph of this
function is drawn, then-

(i) Between two equal values of f(x), there lie at least
one maxima or minima.

(ii) Maxima and minima occur alternately. For example
if x = – 1, 0,2,3 are extreme points of a continuous
function and if x = 0 is a maximum point then x = –
1,2 will be minimum points.

(iii) When x passes a maximum point, the sign of  f’ (x)
changes from + ve to – ve, whereas x passes
through a minimum point, the sign of f’(x) changes
from – ve to + ve.

(iv) If there is no change in the sign of
dy/dx on two sides of a point, then such a point is
not an extreme point.

(v) If f(x) is a maximum (minimum) at a point x = a,
then 1/f (x), [f(x) 0] will be minimum
(maximum) at that point.

(vi) If f(x) is maximum (minimum) at a point x = a, then for
any R,  + f (x), log f(x) and for any k > 0, k f
(x), [f(x)]k are also maximum (minimum) at that point.

 MAXIMA & MINIMA OF

 FUNCTIONS OF TWO VARIABLES

If a function is defined in terms of two variables and
if these variables are associated with a given relation
then by eliminating one variable, we convert function
in terms of one variable and then find the maxima
and minima by known methods.

Ex.42 If x+y = 8 then find the maximum value of xy.

Sol.  Let z = xy

 z = x (8 – x) or z = 8x –x2

   dz/dx = 8 – 2x = 0

 x = 4 d2 z/ dx2 = – 2 < 0

x = 4 is a maximum point. So maximum value is z
= 8.4 – 42 = 16.  Ans.
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 SOME STANDARD GEOMETRICAL
 RESULTS RELATED TO MAXIMA
 & MINIMA

The following results can easily be established.
(i) The area of rectangle with given perimeter is greatest

when it is a square.
(ii) The perimeter of a rectangle with given area is least

when it is a square.
(iii) The greatest rectangle inscribed in a given circle

is a square.
(iv) The greatest triangle inscribed in a given circle

is equilateral.
(v) The semi vertical angle of a cone with given slant

height and maximum volume is tan–1 2 .
(vi) The height of a cylinder of maximum volume inscribed

in a sphere of radius a is a 2a/ 3 .

 SOME IMPORTANT RESULTS
(i) Equilateral triangle :

Area = ( / )3 4 x2, where x is its side.
(ii) Square :

Area = a2 , perimeter = 4a, where a is its side.
(iii) Rectangle:

Area = ab, perimeter = 2 (a+b) where a,b are its sides
(iv) Trapezium :

Area = 1/2 (a+ b) h
Where a,b are lengths of parallel sides and h be the
distance between them.

(v) Circle :
Area = a2 , perimeter = 2 a, where a is its radius.

(vi) Sphere :
Volume = 4/3 a3, surface 4 a2 where a is its radius

(vii) Right Circular cone :
Volume = 1/3 r2h, curved surface = r 
Where r is the radius of its base, h be its height and
  be its slant heights

(viii) Cylinder :
Volume = r2 h
whole surface = 2 r ( r+ h)
where r is the radius of the base and h be its height.

Ex.43 Find the height of a right circular cone of maximum
volume inscribed in a sphere of diameter a.

Sol. Let r be the radius of the base and x be the height of
the inscribed cone. Then

r2 = a2/4 – (x–a/2)2 = ax – x2

If V be the volume of the cone, then
V = 1/3 r2 x = 1/3  (ax –x2) x
                = /3 (ax2 – x3)

dV
dx

= 
3

(2ax – 3x2) , d V
dx

2

2 = 2
3
a – 2 x

Now dv
dx

= 0  x = 0 or x = 2a/3

But x 0 and x = 2a/3, d V
dx

2

2 = 2
3
a < 0.

so V is maximum when height of cone = (2/3) a.Ans.


