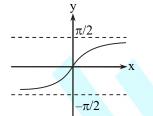
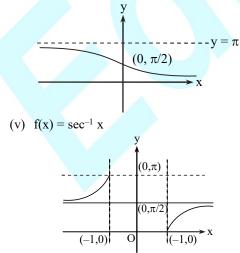
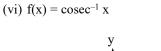
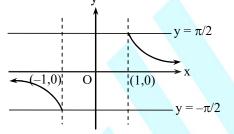

Inverse Trigonometric Function


- **1.** Graph of different inverse Trigonometric function
 - (i) $f(x) = \sin^{-1} x$







Function	Domain	Range
sin ⁻¹ x	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1}x$	[-1, 1]	[0, π]
tan ⁻¹ x	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$\cot^{-1}x$	$(-\infty,\infty)$	$(0,\pi)$
sec ⁻¹ x	$(-\infty,-1] \cup [1,\infty)$	$\left[0,\frac{\pi}{2}\right]\cup\left(\frac{\pi}{2},\pi\right]$
$\cos \sec^{-1} x$	$(-\infty,-1] \cup [1,\infty)$	$\left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right]$

Note :

- (i) 1st quadrant is common to all inverse function
- (ii) 3rd quadrant is not used in inverse function
- (iii) 4^{th} quadrant is used in the clockwise direction

i.e.
$$-\frac{\pi}{2} \le y \le 0$$

3. Properties of inverse Trigonometric function

P-1

(i)
$$\sin^{-1}(\sin\theta) = \theta$$
,
Provided that $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

(ii)
$$\cos^{-1}(\cos\theta) = \theta$$
,

Provided that $0 \le \theta \le \pi$

(iii) $\tan^{-1}(\tan\theta) = \theta$,

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

Provided that
$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

- (iv) $\cot^{-1}(\cot\theta) = \theta$,
 - Provided that $0 < \theta < \pi$
- (v) $\sec^{-1}(\sec\theta) = \theta$,

Provided that $0 \le \theta < \frac{\pi}{2}$ or $\frac{\pi}{2} < \theta \le \pi$

(vi) $\operatorname{cosec}^{-1}(\operatorname{cosec}\theta) = \theta$,

Provided that $-\frac{\pi}{2} \le \theta < 0$ or $0 \le \theta \le \frac{\pi}{2}$

P-2

```
(i) \sin(\sin^{-1}x) = x,
           Provided that -1 \le x \le 1
(ii) \cos(\cos^{-1}x) = x,
           Provided that -1 \le x \le 1
(iii) \tan(\tan^{-1}x) = x,
           Provided that -\infty < x < \infty
(iv) \cot(\cot^{-1}x) = x,
           Provided that -\infty < x < \infty
```

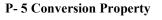
(v) sec $(sec^{-1}x) = x$,

Provided that $-\infty < x \le 1$ or $1 \le x < \infty$

(vi) cosec ($cosec^{-1}x$) = x,

Provided that $-\infty < x \le -1$ or $1 \le x < \infty$

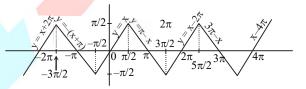
P-3

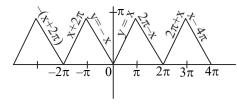

(i) $\sin^{-1}(-x) = -\sin^{-1}x$

- (ii) $\cos^{-1}(-x) = \pi \cos^{-1}x$
- (iii) $\tan^{-1}(-x) = -\tan^{-1}x$
- (iv) $\cot^{-1}(-x) = \pi \cot^{-1}x$
- (v) $\sec^{-1}(-x) = \pi \sec^{-1}x$
- (vi) $\csc^{-1}(-x) = -\csc^{-1}x$

P-4

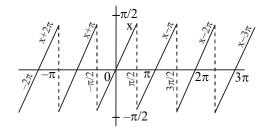
- (i) $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$
- (ii) $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$


(iii)
$$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$$

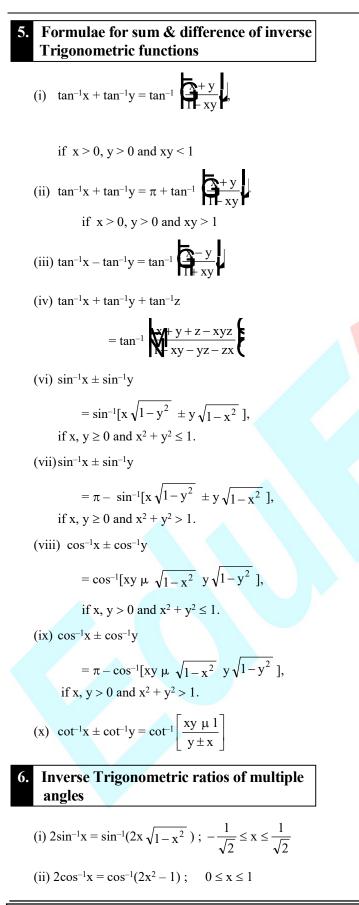

Let
$$\sin^{-1} x = y$$

 $\Rightarrow x = \sin y$
 $\Rightarrow \csc y = \left(\frac{1}{x}\right)$
 $\Rightarrow y = \csc^{-1}\left(\frac{1}{x}\right)$
 $\Rightarrow \sin^{-1}x = \csc^{-1}\left(\frac{1}{x}\right)$. Hence
(i) $\sin^{-1}x = \csc^{-1}\left(\frac{1}{x}\right)$ & $\csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right)$
Similarly the following results can be obtained
(ii) $= 1 + \cos^{-1}\left(\frac{1}{x}\right)$

(ii) $\cos^{-1}x = \sec^{-1}\left(\frac{1}{x}\right)$ & $\sec^{-1}x = \cos^{-1}\left(\frac{1}{x}\right)$ (iii) $\tan^{-1}x = \cot^{-1}\left(\frac{1}{x}\right)$ & $\cot^{-1}x = \tan^{-1}\left(\frac{1}{x}\right)$


P-6 sin⁻¹ sin x:

 $\cos^{-1}\cos x$:


tan⁻¹ tan x:

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-

-9350679141

Edubull

(iii)
$$2\tan^{-1}x = \tan^{-1} \left[\frac{2x}{1-x^2} \right]$$

 $= \sin^{-1} \left[\frac{2x}{1+x^2} \right] = \cos^{-1} \left[\frac{x}{1+x^2} \right]$
(iv) $3 \sin^{-1}x = \sin^{-1}(3x - 4x^3)$; $-\frac{1}{2} \le x \le \frac{1}{2}$
(v) $3 \cos^{-1}x = \cos^{-1}(4x^3 - 3x)$; $0 \le x \le \frac{1}{2}$
(vi) $3 \tan^{-1}x = \tan^{-1} \left[\frac{5x-x^3}{1-3x^2} \right]$; $-\frac{1}{\sqrt{3}} \le x < \frac{1}{\sqrt{3}}$
Miscelleneous results
(i) $\tan^{-1} \left[\frac{x}{\sqrt{a^2 - x^2}} \right] = \sin^{-1} \left(\frac{x}{a} \right)$
(ii) $\tan^{-1} \left[\frac{3a^2x - x^3}{a(a^2 - 3x^2)} \right] = 3 \tan^{-1} \left(\frac{x}{a} \right)$
(iii) $\tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right] = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$
(iv) $\sin^{-1}(x) = \cos^{-1} \left[\sqrt{1-x^2} \right] = \tan^{-1} \left[\sqrt{x} - \frac{x}{\sqrt{1-x^2}} \right]$
 $= \cot^{-1} \left[\sqrt{1-x^2} \right] = \sec^{-1} \left[\sqrt{1-x^2} \right] = \csc^{-1} \left[\sqrt{1-x^2} \right]$
(v) $\cos^{-1}x = \sin^{-1} \left[\sqrt{1-x^2} \right] = \tan^{-1} \left[\sqrt{1-x^2} \right]$
 $= \cot^{-1} \left[\sqrt{1-x^2} \right] = \sec^{-1} \left[\sqrt{1-x^2} \right] = \cos^{-1} \left[\sqrt{1-x^2} \right]$
(vi) $\tan^{-1}x = \sin^{-1} \left[\sqrt{1-x^2} \right] = \cos^{-1} \left[\sqrt{1-x^2} \right]$
 $= \cot^{-1} \left[\sqrt{1-x^2} \right] = \sec^{-1} \left[\sqrt{1-x^2} \right] = \cos^{-1} \left[\sqrt{1-x^2} \right]$
 $= \cot^{-1} \left[\sqrt{1-x^2} \right] = \sec^{-1} \left[\sqrt{1-x^2} \right]$
 $= \cot^{-1} \left[\sqrt{1-x^2} \right] = \sec^{-1} \left[\sqrt{1-x^2} \right]$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141