Introduction to Prime Time

Introduction to Prime Time

Prime Time refers to the study of prime numbers, composite numbers, and their properties.

Prime numbers play an important role in number theory and real-life applications like cryptography and coding.

1. Prime and Composite Numbers

A. Prime Numbers

A prime number is a number that has only two factors: 1 and itself.

Example: 2, 3, 5, 7, 11, 13, 17, 19, ...

• Smallest prime number = 2 (It is also the only even prime number).

B. Composite Numbers

A composite number has more than two factors.

Example: 4, 6, 8, 9, 10, 12, 14, 15, ...

Example Explanation:

• 6 is composite because it has factors 1, 2, 3, and 6.

C. Special Case: 1 is Not Prime or Composite

1 has only one factor (itself), so it is neither prime nor composite.

2. Prime Factorization

Prime factorization is writing a number as a product of prime numbers.

Example: $24 = 2 \times 2 \times 2 \times 3$

3. Properties of Prime Numbers

- i. Every prime number is greater than 1.
- ii. 2 is the only even prime number.
- iii. All prime numbers (except 2) are odd.
- iv. Every composite number can be expressed as a product of prime numbers.
- v. There are infinitely many prime numbers.

4. Prime Nur

4. Prime Numbers Importance

- Used in encryption and security systems (like passwords and banking).
- Helps in understanding factors and multiples.
- Forms the base of higher mathematical concepts.