Hyperbolic Function

1. Definition

If x is a variable number (real or complex), then expression $\frac{e^{x} - e^{-x}}{2}$ is denoted **sinh x**, and it is read

as **'hyperbolic sine x'**. Similarly expression $\frac{e^x + e^{-x}}{2}$

is denoted by $\cosh x$ and it is read as 'hyperbolic cosine x'. Similar to trigonometrical functions the remaining four hyperbolic functions can be defined in terms of sinh x and cosh x. Thus hyperbolic functions are defined as follows-

(i)
$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

(ii) $\cosh x = \frac{e^{x} + e^{-x}}{2}$
(iii) $\tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$
(iv) $\coth x = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$
(u) $\operatorname{cosecel} x = \frac{2}{2}$

(v) cosech x =
$$\frac{1}{e^x - e^{-x}}$$

(vi) sech x = $\frac{2}{e^x + e^{-x}}$

Note : $\sinh 0 = 0$, $\cosh 0 = 1$, $\tanh 0 = 0$

2. Significance of the Name

We know that parametric coordinates of any point on the unit circle $x^2 + y^2 = 1$ is $(\cos \theta, \sin \theta)$, so that these functions are called circular functions and coordinates of any point on unit Hyperbola $x^2 - y^2 = 1$

is $\left(\frac{e^{\theta} + e^{-\theta}}{2}, \frac{e^{\theta} - e^{-\theta}}{2}\right)$ i.e., (cosh, sinh). It means that

the relation which exists amongst $\cos \theta$, $\sin \theta$ and unit circle, that relation also exist amongst $\cosh \theta$, $\sinh \theta$ and unit Hyperbola. Because of this reason these functions are called as **Hyperbolic Functions**.

4. Domain & Range of Hyperbolic Functions

Function	Domain	Range
sinh x	R	R
cosh x	R	[1,∞)
tanh x	R	(-1,1)
coth x	R_0	R −[−1,1]
cosech x	\mathbf{R}_0	\mathbf{R}_0
sech x	R	(0,1]

5. Formulae for Hyperbolic Functions

The following formulae can easily be established directly from above definitions-

A. Reciprocal Formulae :

cosech x	=
	sinh x
sech x =	1
	coshx
coth x =	1
	tanh x
tanh x =	sinh x
	coshx
coth x =	coshx
	sinh x
	cosech x sech x = coth x = tanh x = coth x =

B. Square Formulae :

- (i) $\cosh^2 x \sinh^2 x = 1$ (ii) $\operatorname{sech}^2 x + \tanh^2 x = 1$
- (iii) $\operatorname{coth}^2 x \operatorname{cosech}^2 x = 1$
- (iv) $\cosh^2 x + \sinh^2 x = \cosh 2x$

C. Expansion Formulae:

- (i) $\sinh(x \pm y) = \sinh x \cosh y \cosh x \sinh y$
- (ii) $\cosh(x \pm y) = \cosh x \cosh y \sinh x \sinh y$

(iii)
$$\tanh(x \pm y) = \frac{\tan x \pm \tanh y}{1 \pm \tanh + \tanh y}$$

D. (i) $\sinh x + \sinh y = 2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2}$ (ii) $\sinh x - \sinh y = 2 \cosh \frac{x+y}{2} \sinh \frac{x-y}{2}$

(iii)
$$\cosh x + \cosh y = 2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2}$$

(iv) $\cosh x - \cosh y = 2 \sinh \frac{x+y}{2} \sinh \frac{x-y}{2}$

- **E.** (i) $2 \sinh x \cosh y = \sinh (x + y) + \sinh (x y)$ (ii) $2 \cosh x \sinh y = \sinh (x + y) - \sinh (x - y)$ (iii) $2 \cosh x \cosh y = \cosh (x+y) + \cosh (x-y)$
 - (iv) $2 \sinh x \sinh y = \cosh (x+y) \cosh (x-y)$

Mob no. : +91-9350679141

F. (i) $\sinh 2x = 2 \sinh x \cosh x$

$$=\frac{2\tanh x}{1-\tanh^2 x}$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

(ii)
$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

= $2 \cosh^2 x - 1$

$$= 1 + 2 \sinh^{2} x = \frac{1 + \tanh^{2} x}{1 - \tanh^{2} x}$$

(iii) 2 cosh² x = cosh 2x + 1
(iv) 2 sinh² x = cosh 2x - 1
(v) tanh 2x = $\frac{2 \tanh x}{1 + \tanh^{2} x}$

G. (i) $\sinh 3x = 3 \sinh x + 4 \sinh^3 x$ (ii) $\cosh 3x = 4 \cosh^3 x - 3 \cosh x$

(iii)
$$\tanh 3x = \frac{3 \tanh x + \tanh^3 x}{1 + 3 \tanh^2 x}$$

H. (i) $\cosh x + \sinh x = e^x$ (ii) $\cosh x - \sinh x = e^{-x}$ (iii) $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$

Since
$$\cosh^2 x - \sinh^2 x = 1$$

 $\Rightarrow \sinh x = \sqrt{\cosh^2 x - 1}$

$$\Rightarrow \sinh x = \sqrt{\cosh^2 x - 1} \qquad \dots (1)$$

$$\Rightarrow \sinh x = \sqrt{\frac{1 - \operatorname{sech}^2 x}{\operatorname{sech} x}} \qquad \dots (2)$$

$$\Rightarrow \sinh x = \frac{\tanh x}{\sqrt{1 - \operatorname{sech}^2 x}} \qquad \dots (3)$$

$$\Rightarrow \sinh x = \frac{1}{\sqrt{\coth^2 x - 1}} \qquad \dots (4)$$

Expansions of Hyperbolic Functions

(i) $\sinh x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$ (ii) $\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^5}{6!} + \dots$ (iii) $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = x - \frac{x^3}{3} + 2x^5 - \frac{17}{315}x^7 + \dots$ The expansion of coth x, cosech x does not exist because $\operatorname{coth}(0) = \infty$, $\operatorname{cosech}(0) = \infty$

Relation between Hyperbolic and Circular Functions

We have from Euler formulae $e^{ix} = \cos x + i \sin x$...(1) $e^{-ix} = \cos x - i \sin x$...(2) and adding (1) & (2) $\Rightarrow \cos x = \frac{e^{ix} + e^{-x}}{2}$ Subtracting (2) from (1) $\Rightarrow \sin x = \frac{e^{-x} - e^{-x}}{2i}$

Replacing x by ix in these values, we get

Х

$$\cos\left(\mathrm{ix}\right) = \frac{\mathrm{e}^{-\mathrm{x}} + \mathrm{e}^{\mathrm{x}}}{2} = \cosh\mathrm{x}$$

$$\therefore \cos(ix) = \cosh(ix)$$

$$\sin(ix) = \frac{e^{-x} - e^x}{2i} = i\left(\frac{e^x - e^{-x}}{2}\right)$$

$$\sin(ix) = i \sinh x$$

Also
$$\tan(ix) = \frac{\sinh(ix)}{\cosh(ix)} = \frac{1\sinh x}{\cosh x}$$

 $\tan(ix) = i \tanh x$

Similarly replacing x by ix in the definitions of sinh x and cosh x, we get

$$\sinh(ix) = \frac{e^{ix} - e^{-ix}}{2} = i. \quad \frac{e^{ix} - e^{-ix}}{2i} = i \sin x$$
$$\cosh(ix) = \frac{e^{ix} + e^{-ix}}{2i} = \cos x$$
Also $\tanh(ix) = \frac{\sin h(ix)}{\cosh(ix)} = \frac{i \sin x}{\cos x} = i \tan x$

Thus, we obtain the following relations between hyperbolic and trigonometrical functions.

(i) $\sin(ix) = i \sinh x$ (ii) $\cos(ix) = \cosh x$ $\sinh(ix) = i \sin x$ $\cosh(ix) = \cos x$ $\sinh x = -i \sin (ix)$ $\cosh x = \cos (ix)$ $\sin x = -i \sinh (ix)$ $\cos x = \cosh(ix)$ (iii) $\tan(ix) = i \tanh x$ (iv) $\cot(ix) = -i \coth x$ tanh(ix) = i tan x $\operatorname{coth}(\operatorname{ix}) = -\operatorname{i} \operatorname{cot} x$ tanh x = -i tan (ix) $\operatorname{coth} x = \operatorname{i} \operatorname{cot} (\operatorname{ix})$ $\tan x = -i \tanh (ix)$ $\cot x = i \coth (ix)$ (v) $\sec(ix) = \operatorname{sech} x$ (vi) cosec (ix) = $-i \operatorname{cosech} x$ $\operatorname{sech}(\operatorname{ix}) = \operatorname{sec} x$ $\operatorname{cosech}(\operatorname{ix}) = -\operatorname{i}\operatorname{cosec} x$ sech x = sec(ix) $\operatorname{cosech} x = \operatorname{i} \operatorname{cosec} (\operatorname{ix})$

Note :

For obtaining any formula given in (5)th article, use the following substitutions in the corresponding formula for trigonometric functions.

$$\sin x \longrightarrow i \sinh x, \cos x \longrightarrow \cosh x,$$

tan x — \rightarrow i tanh x $\sin^2 \mathbf{v}$

 $\sec x = \operatorname{sech}(\mathrm{i}x)$ $\operatorname{cosec} x = i \operatorname{cosech} (ix)$

For example :

Power by: VISIONet Info Solution Pvt. Ltd

Website : www.edubull.com

(i) For finding out the formula for cosh 2x in terms of tanh x, replace tan x by i tanh x and $\tan^2 x$ by -tanh² x in the following formula of trigonometric function of cos 2x :

$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

We get
$$\cosh 2x = \frac{1 + \tanh^2 x}{1 - \tanh^2 x}$$

Period of Hyperbolic Functions

If for any function f(x), f(x + T) = f(x), then f(x) is called the periodic function and least positive value of T is called the **period of the function.**

$$sinh x = sinh (2 \pi i + x)$$

$$cosh x = cosh (2\pi i + x)$$

$$tanh x = tanh (\pi i + x)$$

and Therefore, the period of these functions are $2\pi i$, 2i and

i respectively. Also periods of cosech x, sech x and coth x are 2 π i, 2 π i and π i respectively.

Note :

Hyperbolic functions are neither periodic functions nor their curves are periodic, but they show the algebraic properties of periodic functions and having imaginary period.

10. Inverse Hyperbolic Functions

Definition : If sinh y = x, then y is called the **Inverse Hyperbolic sine of x** and it is written as $y = \sinh^{-1} x$. Similarly $\operatorname{cosech}^{-1} x$, $\operatorname{cosh}^{-1} x$, $\tanh^{-1} x$ etc. can be defined.

10.1 Domain & range of Inverse Hyperbolic Function :

Function	Domain	Range
$\sinh^{-1} x$	R	R
$\cosh^{-1} x$	[1,)	R
$\tanh^{-1} \mathbf{x}$	(-1,1)	R
$\operatorname{coth}^{-1} x$	R-[-1,1]	R_0
$\operatorname{sech}^{-1} x$	(0,1]	R
cosech ⁻¹ x	\mathbf{R}_0	R_0

10.2 Relation between inverse Hyperbolic function and inverse circular function

Method : Let $\sinh^{-1} x = y$

 $x = \sinh y$ $= -i \sin(iy)$ ix $= \sin(iy)$ $iy = sin^{-1}(ix)$

$$y = -i \sin^{-1}(ix)$$

Mob no. : +91-9350679141

Edubull

 $\sinh^{-1} x = -i \sin^{-1} (ix)$

Therefore we get the following relations

- (i) $\sinh^{-1} x = -i \sin^{-1} (ix)$
- (ii) $\cosh^{-1} x = -i \cos^{-1} x$
- (iii) $\tanh^{-1} x = -i \tan^{-1} (ix)$
- (iv) $\operatorname{coth}^{-1} x = i \operatorname{cot}^{-1} (ix)$
- (v) $\operatorname{sech}^{-1} x = -i \operatorname{sec}^{-1} x$
- (vi) $\operatorname{cosech}^{-1} x = i \operatorname{cosec}^{-1} (ix)$

10.3 To express any one inverse hyperbolic function in terms of the other inverse hyperbolic functions :

To express sinh⁻¹ x in terms of the others

(i) Let
$$\sinh^{-1} x = y$$

 $\Rightarrow x = \sinh y$
 $\Rightarrow \cosh y = \frac{1}{x}$
 $\Rightarrow y = \operatorname{cosech}^{-1} \left(\frac{1}{x}\right)$
(ii) $\Theta \cosh y = \sqrt{1 + \sinh^2 y} = \sqrt{1 + x^2}$
 $\therefore y = \cosh^{-1} \sqrt{1 + x^2}$
 $\Rightarrow \sinh^{-1} x = \cosh^{-1} \sqrt{1 + x^2}$
(iii) $\Theta \tanh y = \frac{\sinh y}{\cosh y} = \frac{\sinh y}{\sqrt{1 + \sinh^2 y}}$
 $= \frac{x}{\sqrt{1 + x^2}} \therefore y = \tanh^{-1} \frac{x}{\sqrt{1 + x^2}}$
(iv) $\Theta \coth y = \frac{\sqrt{1 + \sinh^2 y}}{\sinh y} = \frac{\sqrt{1 + x^2}}{x}$
(iv) $\Theta \coth y = \frac{\sqrt{1 + \sinh^2 y}}{\sinh y} = \frac{\sqrt{1 + x^2}}{x}$
 $\Rightarrow \sinh^{-1} x = \tanh^{-1} x \frac{x}{\sqrt{1 + x^2}}$
(iv) $\Theta \coth y = \frac{\sqrt{1 + \sinh^2 y}}{\sinh y} = \frac{\sqrt{1 + x^2}}{x}$
(v) $\Theta \operatorname{sech} y = \frac{1}{\cosh y}$
 $= \frac{1}{\sqrt{1 + \sinh^2 y}} = \frac{1}{\sqrt{1 + x^2}}$
 $y = \operatorname{sech}^{-1} \frac{1}{\sqrt{1 + x^2}}$

$$\sinh^{-1} x = \operatorname{sech}^{-1} \frac{1}{\sqrt{1+x^2}}$$
(vi) Also $\sinh^{-1} x = \operatorname{cosech}^{-1} (1/x)$
From the above it is clear that
 $\operatorname{coth}^{-1} x = \tanh^{-1} (1/x)$

 $\operatorname{sech}^{-1} x = \cosh^{-1} (1/x)$ $\operatorname{cosech}^{-1} = \sinh^{-1} (1/x)$

Note :

If x is real then all the above six inverse functions are single valued.

10.4 Relation between inverse hyperbolic functions and logarithmic functions

Method : Let $\sinh^{-1} x = y$

$$\Rightarrow x = \sinh y = \frac{e^{y} - e^{-y}}{2}$$
$$\Rightarrow e^{2y} - 2x e^{y} - 1 = 0$$
$$\Rightarrow e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2} = x \pm \sqrt{x^{2} + 1}$$
But $e^{y} > 0$, $\forall y$ and $x < \sqrt{x^{2} + 1}$
$$\therefore e^{y} = x + \sqrt{x^{2} + 1}$$
$$y = \log (x + \sqrt{x^{2} + 1})$$
$$\sinh^{-1} x = \log (x + \sqrt{x^{2} + 1})$$

By the above method we can obtain the following relations between inverse hyperbolic functions and principal values of logarithmic functions :

(i) $\sinh^{-1} x = \log (x + \sqrt{x^2 + 1})$ $(-\infty < x < \infty)$ (ii) $\cosh^{-1} x = \log (x + \sqrt{x^2 + 1})$ $(x \ge 1)$ (iii) $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{2}\right)$

(iii)
$$\tanh^{-1} x = 1/2 \log \left(\frac{1+x}{1-x}\right)$$
 $|x| < 1$

(iv)
$$\operatorname{coth}^{-1} x = 1/2 \log \left(\frac{x+1}{x-1} \right)$$
 $|x| > 1$

(v)
$$\operatorname{sech}^{-1} x = \log\left(\frac{1+\sqrt{1-x^2}}{x}\right)$$
 $0 < x \ 1$
(vi) $\operatorname{cosech}^{-1} x = \log\left(\frac{1+\sqrt{1+x^2}}{x}\right)$ $(x \neq 0)$

Note :

Formulae for values of $\operatorname{cosech}^{-1} x$, $\operatorname{sech}^{-1} x$ and $\operatorname{coth}^{-1} x$ may be obtained by replacing x by 1/x in the values of $\sinh^{-1} x$, $\cosh^{-1} x$ and $\tanh^{-1} x$ respectively.

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141