Matrices

INTRODUCTION :

Any rectangular arrangement of numbers (real or complex) (or of real valued or complex valued expressions) is called a **matrix**. This arrangement is enclosed by small () or big [] brackets. A matrix is represented by capital letters A, B, C etc. and its element are by small letters a, b, c, x, y etc.

eg. A =
$$\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, B = $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$

ORDER OF A MATRIX

A matrix which has m rows and n columns is called a matrix of order $m \times n$.

A matrix A of order $m \times n$ is usually written in the following manner-

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{23} & a_{23} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{ij} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} \text{ or } \\ A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \ \times \ n} \quad \text{where} \begin{array}{c} i = 1, \ 2, \dots \dots m \\ j = 1, \ 2, \dots \dots n \end{array}$$

Here a_{ij} denotes the element of i^{th} row and j^{th} column.

eg. order of matrix $\begin{bmatrix} 3 & -1 & 5 \\ 6 & 2 & -7 \end{bmatrix}$ is 2×3 .

Solved Examples

Ex.1 Construct a 3 × 2 matrix whose elements are given by $a_{ij} = \frac{1}{2} |i-3j|$.

Sol. In general a 3 × 2 matrix is given by A =
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

 $a_{ij} = \frac{1}{2} | i - 3j |, i = 1, 2, 3 \text{ and } j = 1, 2$
Therefore $a_{11} = \frac{1}{2} | 1 - 3 \times 1 | = 1$
 $a_{12} = \frac{1}{2} | 1 - 3 \times 2 | = \frac{5}{2}$
 $a_{21} = \frac{1}{2} | 2 - 3 \times 1 | = \frac{1}{2}$
 $a_{22} = \frac{1}{2} | 2 - 3 \times 2 | = 2$
 $a_{31} = \frac{1}{2} | 3 - 3 \times 1 | = 0$
 $a_{32} = \frac{1}{2} | 3 - 3 \times 2 | = \frac{3}{2}$
Hence the required matrix is given hy A =
$$\begin{bmatrix} 1 & \frac{5}{2} \\ \frac{1}{2} & 2 \\ 0 & \frac{3}{2} \end{bmatrix}$$

TYPES OF MATRICES

ROW MATRIX :

A matrix having only one row is called as row matrix (or row vector).General form of row matrix is $A = [a_{11}, a_{12}, a_{13}, ..., a_{1n}]$

This is a matrix of order " $1 \times n$ " (or a row matrix of order n)

COLUMN MATRIX :

A matrix having only one column is called as column matrix (or column vector).

Column matrix is in the form
$$A = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}$$

This is a matrix of order " $m \times 1$ " (or a column matrix of order m)

SINGLETON MATRIX :

If in a Matrix there is only one element then it is called Singleton Matrix.

Thus

A = $[a_{ij}]_{m \times n}$ is a Singleton Matrix if m = n = 1. eg. [2], [3], [a], [-3] are Singleton Matrices.

ZERO OR NULL MATRIX :

$$A = [a_{ij}]_{m \times n}$$
 is called a zero matrix, if $a_{ij} = 0 \forall i \& j$

0 0 0

e.g.: (i)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

SQUARE MATRIX :

A matrix in which number of rows & columns are equal is called a square matrix. The general form of a square matrix is

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

which we denote as $A = [a_{ii}]_n$.

This is a matrix of order " $n \times n$ " (or a square matrix of order n)

Note :

- (a) If m ≠ n then Matrix is called a Rectangular Matrix.
- (b) The elements of a Square Matrix A for which i = j i.e. a_{11} , a_{22} , a_{33} , a_{nn} are called diagonal elements and the line joining these elements is called the principal diagonal or of leading diagonal of Matrix A.
- (c) **Trance of a Matrix :** The sum of diagonal elements of a square matrix . A is called the trance of Matrix A which is denoted by tr A.

tr A =
$$\sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots a_{nn}$$

DIAGONAL MATRIX :

A square matrix $[a_{ij}]_n$ is said to be a diagonal matrix if $a_{ij} = 0$ for $i \neq j$. (i.e., all the elements of the square matrix other than diagonal elements are zero)

Note :

(a) Diagonal matrix of order n is denoted as Diag $(a_{11}, a_{22}, \dots, a_{nn})$.

(b)Number of zero in a diagonal matrix is given by $n^2 - n$ where n is a order of the Matrix.

e.g.: (i)
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = diag(a,b,c)$$

(ii) $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c \end{bmatrix} = diag(a,b,0,c)$

SCALAR MATRIX :

Scalar matrix is a diagonal matrix in which all the diagonal elements are same. $A = [a_{ij}]_n$ is a scalar matrix, if (i) $a_{ij} = 0$ for $i \neq j$ and (ii) $a_{ij} = k$ for i = j.

e.g.: (i)
$$\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$
 (ii) $\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$

UNIT MATRIX (IDENTITY MATRIX) :

Unit matrix is a diagonal matrix in which all the diagonal elements are unity. Unit matrix of order 'n' is denoted by I_n (or I).

i.e. $A = [a_{ij}]_n$ is a unit matrix when $a_{ij} = 0$ for $i \neq j$ & $a_{ii} = 1$

eg.
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

TRIANGULAR MATRIX :

A Square Matrix $[a_{ij}]$ is said to be triangular matrix if each element above or below the principal diagonal is zero it is of two types-

UPPER TRIANGULAR MATRIX :

A= $[a_{ij}]_{m \times n}$ is said to be upper triangular, if $a_{ij} = 0$ for i > j (i.e., all the elements below the diagonal elements are zero).

	Га	b	С	d		а	b	c
e.g.:(i)	0	х	у	z	(ii)	0	х	У
	0	0	u	v		0	0	z

LOWER TRIANGULAR MATRIX :

A = $[a_{ij}]_{m \times n}$ is said to be a lower triangular matrix, if $a_{ij} = 0$ for i < j. (i.e., all the elements above the diagonal elements are zero.)

	а	0	0	[a	0	0	0	
e.g. : (i)	b	С	0	(ii) b	С	0	0	
	x	у	z	(II) x	у	z	0	

Note :

Minimum number of zero in a triangular matrix is

given by $\frac{n(n-1)}{2}$ where n is order of Matrix.

COMPARABLE MATRICES :

Two matrices A & B are said to be comparable, if they have the same order (i.e., number of rows of A & B are same and also the number of columns).

e.g.: (i)
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & -1 & 2 \end{bmatrix} \& B = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

are comparable

e.g.: (ii)
$$C = \begin{bmatrix} 2 & 3 & 4 \\ 3 & -1 & 2 \end{bmatrix} \& D = \begin{bmatrix} 3 & 0 \\ 4 & 1 \\ 2 & 3 \end{bmatrix}$$

are not comparable

EQUALITY OF MATRICES :

Two matrices A and B are said to be equal if they are comparable and all the corresponding elements are equal.

Let
$$A = [a_{ij}]_{m \times n} \& B = [b_{ij}]_{p \times q}$$

 $A = B \text{ iff} \qquad (i) m = p, n = q$
 $(ii) a_{ij} = b_{ij} \forall i \& j.$

SINGULAR MATRIX :

Matrix A is said to be singular matrix if its determinant |A| = 0, otherwise non-singular matrix i.e.

If det $|A| = 0 \Rightarrow$ Singular and det $|A| \neq 0 \Rightarrow$ non-singular

Solved Examples

Ex.2: Let
$$A = \begin{bmatrix} \sin\theta & 1/\sqrt{2} \\ -1/\sqrt{2} & \cos\theta \\ \cos\theta & \tan\theta \end{bmatrix} \& B = \begin{bmatrix} 1/\sqrt{2} & \sin\theta \\ \cos\theta & \cos\theta \\ \cos\theta & -1 \end{bmatrix}$$

Find θ so that $A = B$.

Sol. By definition A & B are equal if they have the same order and all the corresponding elements are equal.

Thus we have
$$\sin \theta = \frac{1}{\sqrt{2}}$$
, $\cos \theta = -\frac{1}{\sqrt{2}}$ & $\tan \theta = -1$
 $\Rightarrow \theta = (2n+1) \pi - \frac{\pi}{4}$.
 $\begin{bmatrix} x+3 & z+4 & 2y-7 \end{bmatrix} \begin{bmatrix} 0 & 6 & 3y-2 \end{bmatrix}$

Ex.3 If
$$\begin{bmatrix} x+6 & 2+4 & 2y & 1 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0 \end{bmatrix} = \begin{bmatrix} -6 & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}$$

then find the values of a b c x y and z

then find the values of a, b, c, x, y and z.

Sol. As the given matrices are equal, therefore, their corresponding elements must be equal. Comparing the corresponding elements, we get

 $\begin{array}{ll} x+3=0 & z+4=6 & 2y-7=3y-2 \\ a-1=-3 & 0=2c+2 & b-3=2b+4 \\ \Rightarrow a=-2, \, b=-7, \, c=-1, \, x=-3, \, y=-5, \, z=2 \end{array}$

OPERATIONS ON MATRICES

MULTIPLICATION OF MATRIX

BY SCALAR :

Let λ be a scalar (real or complex number) & $A = [a_{ij}]_{m \times n}$ be a matrix. Thus the product λA is defined as $\lambda A = [b_{ij}]_{m \times n}$ where $b_{ij} = \lambda a_{ij} \forall i \& j$.

e.g.:
$$A = \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 2 & 1 & -3 \\ 0 & 0 & -1 & -2 \end{bmatrix} \& -3A \equiv (-3)$$
$$A = \begin{bmatrix} -6 & 3 & -9 & -15 \\ 0 & -6 & -3 & 9 \\ 0 & 0 & 3 & 6 \end{bmatrix}$$

Properties of Scalar Multiplication :

If A, B are Matrices of the same order and λ , μ are any two scalars then -

(i)
$$\lambda(A + B) = \lambda A + \lambda B$$

(ii)
$$(\lambda + \mu) A = \lambda A + \mu A$$

(iii)
$$\lambda(\mu A) = (\lambda \ \mu A) = \mu(\lambda A)$$

(iv)
$$(-\lambda A) = -(\lambda A) = \lambda(-A)$$

(v) tr (kA) = k tr (A)

Note : If A is a scalar matrix, then $A = \lambda I$, where λ is a diagonal entry of A

ADDITION OF MATRICES :

Let A and B be two matrices of same order (i.e. comparable matrices). Then A+B is defined to be.

$$A + B = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n}.$$

= $[c_{ij}]_{m \times n}$ where $c_{ij} = a_{ij} + b_{ij} \forall i \& j.$
e.g.: $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 \\ -2 & -3 \\ 5 & 7 \end{bmatrix},$
 $A + B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 6 & 7 \end{bmatrix}$

SUBSTRACTION OF MATRICES :

Let A & B be two matrices of same order. Then A-B is defined as A+(-B) where -B is (-1)B.

PROPERTIES OF ADDITION

If A, B and C are Matrices of same order, then-

- (i) A + B = B + A (Commutative Law)
- (ii) (A+B) + C = A + (B + C) (Associative Law)
- (iii) A + O = O + A = A, where O is zero matrix which is additive identity of the matrix.
- (iv) A + (A) = 0 = (-A) + A where (-A) is obtained by changing the sign of every element of A which is additive inverse of the Matrix

(v)
$$\begin{vmatrix} A+B = A+C \\ B+A = C+A \end{vmatrix} \Rightarrow B = C$$
 (Cancellation Law)

(vi) tr
$$(A \pm B) = tr (A) \pm tr (B)$$

Solved Examples

Ex.4 If X and Y two matrices are such that $X - Y = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} \text{ and } X + Y = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \text{ then } Y$ matrices is-

(A)
$$\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$
 (B) $\begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix}$
(C) $\begin{bmatrix} -1 & -2 \\ 2 & 2 \end{bmatrix}$ (D) None of these

Sol. Given that $X - Y = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$...(1)

and X + Y = $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$...(2) Subtracting (2) from (1)

$$-2 Y = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$

(-2) Y = $\begin{bmatrix} 3-1 & 2-(-2) \\ -1-3 & 0-4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -4 & -4 \end{bmatrix}$
$$\Rightarrow Y = -\frac{1}{2} \begin{bmatrix} 2 & 4 \\ -4 & -4 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 2 & 2 \end{bmatrix}$$

Ans.[C]

Matrices

-1 -2 1 3 **Ex.5** If A = $\begin{vmatrix} 3 & 2 \end{vmatrix}$ and B = $\begin{vmatrix} 0 & 5 \end{vmatrix}$ and 2 5 3 1 A + B - D = 0 (zero matrix), then D matrix will be- $(A) \begin{bmatrix} 0 & 2 \\ 3 & 7 \\ 6 & 5 \end{bmatrix}$ $(B)\begin{bmatrix} 0 & 2\\ 3 & 7\\ 5 & 6 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & -2 \\ -3 & -7 \\ -5 & -6 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 1 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$ **Sol.** Let $D = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$ $\therefore A + B - D = \begin{bmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1-1-a & 3-2-b \\ 3+0-c & 2+5-d \\ 2+3-e & 5+1-f \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\Rightarrow -a = 0 \Rightarrow a = 0, 1 - b = 0$ \Rightarrow b = 1,3 - c = 0 \Rightarrow c = 3, 7 - d = 0 \Rightarrow d = 7, 5 - e = 0 \Rightarrow e = 5, 6 - f = 0 $\Rightarrow f = 6$ $\therefore \mathbf{D} = \begin{bmatrix} 0 & 1 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}$ Ans.[C **Ex.6** If $\begin{bmatrix} 1 & 0 \\ 3 & -4 \end{bmatrix} + \begin{bmatrix} a & 1 \\ -1 & b \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}$, then value of a, b are -(A) 1, -2(B) - 1, 2(C) - 1, -2(D) 1, 2 Sol. Here $\begin{bmatrix} 1+a & 0+1 \\ 3-1 & -4+b \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}$ \Rightarrow 1 + a = 2 and - 4 + b = -2 \Rightarrow a = 1, b = 2 Ans.[D]

Ex.7 If $X = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ and $3X - \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ then a is equal to -(C) 0 (D) – 2 (A) 1 (B) 2 **Sol.** $3X = \begin{bmatrix} 3 & 3a \\ 0 & 3 \end{bmatrix}$ \Rightarrow L.H.S. = $\begin{bmatrix} 3-2 & 3a-3 \\ 0-0 & 3-2 \end{bmatrix} = \begin{bmatrix} 1 & 3a-3 \\ 0 & 1 \end{bmatrix}$ Now by equality of two matrices, we have $3a - 3 = 3 \implies a = 2$ Ans.[B] **Ex.8** IF A = $\begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$ and B = $\begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$, then find the matrix X, such that 2A + 3X = 5BSol. We have 2A + 3X = 5B. $\Rightarrow 3X = 5B - 2A \qquad \Rightarrow X = \frac{1}{3} (5B - 2A)$ $\Rightarrow X = \frac{1}{3} \left[5 \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix} - 2 \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} \right]$ $= \frac{1}{3} \left[\begin{vmatrix} 10 & -10 \\ 20 & 10 \\ -25 & 5 \end{vmatrix} + \begin{vmatrix} -10 & 0 \\ -8 & 4 \\ -6 & -12 \end{vmatrix} \right]$ $\Rightarrow X = \frac{1}{3} \begin{bmatrix} 10 - 16 & -10 + 0 \\ 20 - 8 & 10 + 4 \\ -25 - 6 & 5 - 12 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -6 & -10 \\ 12 & 14 \\ -13 & -7 \end{bmatrix}$ $= \begin{bmatrix} -2 & \frac{-10}{3} \\ 4 & \frac{14}{3} \\ \frac{-31}{2} & \frac{-7}{2} \end{bmatrix}$ **Ex.9** If $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & k & 5 \\ 4 & 2 & 1 \end{bmatrix}$ is a singular matrix, then k is equal to-(A) - 1 (B) 8 (C) 4(D) – 8 **Sol.** A is singular $\Rightarrow |A| = 0$ $\Rightarrow \begin{vmatrix} 2 & k & 5 \\ 4 & 2 & 1 \end{vmatrix} = 0$ $\Rightarrow 1(k - 10) + 3(2 - 20) + 2(4 - 4k) = 0$ \Rightarrow 7 k + 56 = 0 \Rightarrow k = -8 Ans.[D]

MULTIPLICATION OF MATRICES :

Let A and B be two matrices such that the number of columns of A is same as number of rows of B. i.e., $A = [a_{ij}]_{m \times p}$ & $B = [b_{ij}]_{p \times p}$.

Then AB = $[c_{ij}]_{m \times n}$ where $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$, which is the dot product of ith row vector of A and jth column

vector of B.

e.g.:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix}$
 $AB = \begin{bmatrix} 3 & 4 & 9 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$

Notes :

The product AB is defined iff the number of columns of A is equal to the number of rows of B. A is called as premultiplier & B is called as post multiplier. AB is defined \Rightarrow BA is defined.

PROPERTIES OF MATRIX

MULTIPLICATION:

If A, B and C are three matrices such that their product is defined , then

- (i) AB \neq BA (Generally not commutative)
- (ii) (AB) C = A (BC) (Associative Law)
- (iii) IA = A = AI

I is identity matrix for matrix multiplication

- (iv) A(B + C) = AB + AC (Distributive Law)
- (v) If $AB = AC \implies B = C$

(Cancellation Law is not applicable)

(vi) If AB = 0 It does not mean that A = 0 or B = 0, again product of two non- zero matrix may be zero matrix.

(vii) tr (AB) = tr (BA)

(i) The multiplication of two diagonal matrices is again a diagonal matrix.

Note :

- (ii) The multiplication of two triangular matrices is again a triangular matrix.
- (iii) The multiplication of two scalar matrices is also a scalar matrix.
- (iv) If A and B are two matrices of the same order, then
 - (a) $(A + B)^2 = A^2 + B^2 + AB + BA$
 - (b) $(A B)^2 = A^2 + B^2 AB BA$
 - (c) $(A B) (A + B) = A^2 B^2 + AB BA$
 - (d) $(A+B) (A-B) = A^2 B^2 AB + BA$
 - (e) A(-B) = (-A) B = -(AB)

Positive Integral powers of a Matrix :

The positive integral powers of a matrix A are defined only when A is a square matrix. Also then $A^2 = A.A$ $A^3 = A.A.A = A^2A$

Also for any positive integers m,n

- (i) $A^m A^n = A^{m+n}$
- (ii) $(A^m)^n = A^{mn} = (A^n)^m$
- (iii) $I^n = I$, $I^m = I$
- (iv) $A^{\circ} = I_n$ where A is a square matrices of order n.

MATRIX POLYNOMIAL :

If $f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_nx^0$ then we define a matrix polynomial

 $f(A) = a_0A^n + a_1A^{n-1} + a_2A^{n-2} + \dots + a_nI_n$ where A is the given square matrix. If f(A) is the null matrix then A is called the zero or root of the matrix polynomial f(x).

Note that $(A)^0$ is not defined if A is a null matrix.

DEFINITIONS:

(A) Idempotent Matrix :

A square matrix is idempotent provide $A^2 = A$. For an idempotent matrix

A, $A^n = A \forall n \ge 2$, $n \in N \Longrightarrow A^n = A$, $n \ge 2$.

For example if A= $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ then A² = A

i.e. A is idempotent.

B. Nilpotent Matrix:

A square matrix is said to be nilpotent matrix of index p, $(p \in N)$, if $A^P = O$, $A^{P-1} \neq 0$ i.e. if p is the least positive integer for which $A^P = O$, then A is said to be nilpotent of index p.

e.g. (i) A=
$$\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & 3 \end{bmatrix}$$
 Note that A³ = 0 but
A² \neq 0 \Rightarrow index of nil potency = 3
(ii) A =
$$\begin{bmatrix} ab & b^{2} \\ -a^{2} & -ab \end{bmatrix}$$
 is a nilpotent matrix 2.
(iii) A =
$$\begin{bmatrix} a & -a^{2} \\ 1 & -a \end{bmatrix} \begin{bmatrix} a & -a^{2} \\ 1 & -a \end{bmatrix}$$
 nilpoptent

(C) Periodic Matrix :

A square matrix which satisfies the relation A^{K+} $^{l} = A$, for some positive integer K then A is periodic with period K i.e. if K is the least positive integer for which $A^{K+1} = A$ then A is said to be periodic with period K. If K = 1 then A is called idempotent.

e.g. the matrix
$$\begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$$
 has the period 1.

Note:

(1)Period of a square null matrix is not defined.(2)Period of an idempotent matrix is 1.

(D) Involutory Matrix :

If $A^2 = I$, the matrix is said to be an involutary matrix. An involutary matrix is its own inverse.

e.g. A =
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Solved Examples

Ex.10 If
$$\begin{bmatrix} 1 & x & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -1 \end{bmatrix} = 0,$$

then the value of x is -
(A) - 1 (B) 0 (C) 1 (D) 2

Sol. The LHS of the equation

$$= \begin{bmatrix} 2 & 4x + 9 & 2x + 5 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2x + 4x + 9 - 2x - 5 \end{bmatrix} = 4x + 4$$
Thus $4x + 4 = 0 \implies x = -1$ Ans.[A]

Ex.11 If
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
 then -
(A) x = 2, y = 1 (B) x = 1, y = 2
(C) x = 3, y = 2 (D) x = 2, y = 3

Sol. The given matrix equation can be written as

$$\begin{bmatrix} x + 2y \\ 2x + y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\Rightarrow x + 2y = 5 \text{ and } 2x + y = 4$$

$$\Rightarrow x = 1, y = 2$$

Ans.[B]

Ex.12 If A =
$$\begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}$$
 then element a_{21} of A^2 is-
(A) 22 (B) - 15
(C) - 10 (D) 7

Sol. The element a_{21} is product of second row of A to the first column of A

∴
$$a_{21} = [3-4] \begin{bmatrix} -1 \\ 3 \end{bmatrix} = -3 - 12 = -15$$

Ans.[B]

TRANSPOSE OF A MATRIX :

Let $A = [a_{ij}]_{m \times n}$. Then the transpose of A is denoted by A'(or A^T) and is defined as

 $\mathbf{A}' = [\mathbf{b}_{ij}]_{\mathbf{n} \times \mathbf{m}} \text{ where } \mathbf{b}_{ij} = \mathbf{a}_{ji} \quad \forall i \& j.$

i.e. A' is obtained by rewriting all the rows of A as columns (or by rewriting all the columns of A as rows).

e.g. :
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ a & b & c & d \\ x & y & z & w \end{bmatrix}$$
, $A' = \begin{bmatrix} 1 & a & x \\ 2 & b & y \\ 3 & c & z \\ 4 & d & w \end{bmatrix}$

Properties of Transpose :

(i)
$$\left(\mathsf{A}^{\mathsf{T}}\right)^{\mathsf{T}} = \mathbf{A}$$

(ii)
$$(\mathbf{A} \pm \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} \pm \mathbf{B}^{\mathrm{T}}$$

(iii)
$$(AB)^{T} = B^{T} A^{T}$$

(iv) $(\mathbf{k}\mathbf{A})^{\mathrm{T}} = \mathbf{k}(\mathbf{A})^{\mathrm{T}}$

(v)
$$(A_1 A_2 A_3 \dots A_{n-1} A_n)^T$$

= $A_n^T A_{n-1}^T \dots A_3^T A_2^T A_1^T$

(vi)
$$I^{1} = I$$

(vii) tr (A) = tr (A^T)

SYMMETRIC & SKEW-SYMMETRIC MATRIX :

A square matrix A is said to be symmetric if A' = Ai.e. Let $A = [a_{ij}]_{n}$. A is symmetric iff $a_{ij} = a_{ji} \forall i \& j$. A square matrix A is said to be skew-symmetric if A' = -A

i.e. Let $A = [a_{ij}]_n$. A is skew-symmetric iff $a_{ij} = -a_{ji}$ $\forall i \& j$.

e.g. A =
$$\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$
 is a symmetric matrix.
B= $\begin{bmatrix} o & x & y \\ -x & o & z \\ -y & -z & 0 \end{bmatrix}$ is a skew-symmetric matrix.

Properties of Symmetric and skewsymmetric matrices :

(i) If A is a square matrix, then $A + A^T$, AA^T , A^TA are symmetric matrices while $A - A^T$ is Skew- Symmetric Matrices.

(ii) If A is a Symmetric Matrix, then -A, KA, A^{T} , A^{n} , A^{-1} , $B^{T}AB$ are also symmetric matrices where $n \in N$, $K \in R$ and B is a square matrix of order that of A.

(iii) If A is a skew symmetric matrix, then-

(a) A^{2n} is a symmetric matrix for $n_{\, \in \,} \, N$

(b) A^{2n+1} is a skew - symmetric matrices for $n\,\in\,N.$

(c) kA is also skew - symmetric matrix where $k \in R$.

(d) $B^T AB$ is also skew – symmetric matrix where

B is a square matrix of order that of A

(iv) If A, B are two symmetric matrices, then-(a) A \pm B, AB + BA are also symmetric matrices.

(b) AB – BA is a skew - symmetric matrix.

(c) AB is a symmetric matrix when AB = BA.

(v) If A,B are two skew - symmetric matrices, then-

(a) A \pm B, AB – BA are skew- symmetric matrices.

(b) AB + BA is a symmetric matrix.

(vi) If A is a skew - symmetric matrix and C is a column matrix, then C^T AC is a zero matrix.
(vii) Every square matrix A can uniquelly be expressed as sum of a symmetric and skew symmetric matrix i.e.

$$\mathbf{A} = \left[\frac{1}{2}\left(\mathbf{A} + \mathbf{A}^{\mathsf{T}}\right)\right] + \left[\frac{1}{2}\left(\mathbf{A} - \mathbf{A}^{\mathsf{T}}\right)\right]$$

ORTHOGONAL MATRIX

A square Matrix A is called orthogonal if $AA^{T} = I = A^{T}A$ i.e. if $A^{-1} = A^{T}$ eg. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is a orthogonal matrix because here $A^{-1} = A^{T}$

Solved Examples

Ex.13 If
$$A = \begin{bmatrix} -2\\4\\5 \end{bmatrix}$$
, $B = [13 - 6]$, verify that (AB)' =
B'A'.
Sol. We have $A = \begin{bmatrix} -2\\4\\5 \end{bmatrix}$, $B = [1 \ 3 \ -6]$
Then $AB = \begin{bmatrix} -2\\4\\5 \end{bmatrix} [1 \ 3 \ -6] = \begin{bmatrix} -2 & -6 & 12\\4 & 12 & -24\\5 & 15 & -30 \end{bmatrix}$
Now $A' = [-2 \ 4 \ 5]$, $B' = \begin{bmatrix} 1\\3\\-6 \end{bmatrix}$
 $B'A' = \begin{bmatrix} 1\\3\\-6 \end{bmatrix} [-2 \ 4 \ 5] = \begin{bmatrix} -2 & 4 & 5\\-6 & 12 & 15\\12 & -24 & -30 \end{bmatrix} = (AB)'$
Clearly (AB)' = B'A'

Ex.14 Express the matrix B = $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum

of a symmetric and a skew symmetric matrix.

Sol. Here B' =
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$

Let P = $\frac{1}{2}(B + B') = \frac{1}{2}\begin{bmatrix} 4 & -3 & -3 \\ -3 & 6 & 2 \\ -3 & 2 & -6 \end{bmatrix}$
$$= \begin{bmatrix} 2 & -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & 3 & 1 \\ -\frac{3}{2} & 1 & -3 \end{bmatrix}$$

Now P' =
$$\begin{bmatrix} 2 & \frac{-3}{2} & \frac{-3}{2} \\ \frac{-3}{2} & 3 & 1 \\ \frac{-3}{2} & 1 & -3 \end{bmatrix} = P$$

Thus $P = \frac{1}{2} (B + B')$ is a symmetric matrix.

Also, Let
$$Q = \frac{1}{2}(B - B') = \frac{1}{2}\begin{bmatrix} 0 & -1 & -5 \\ 1 & 0 & 6 \\ 5 & -6 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & \frac{-1}{2} & \frac{-5}{2} \\ \frac{1}{2} & 0 & 3 \\ \frac{5}{2} & -3 & 0 \end{bmatrix}$$
Now $Q' = \begin{bmatrix} 0 & \frac{1}{2} & \frac{5}{3} \\ -\frac{1}{2} & 0 & -3 \\ -\frac{5}{2} & 3 & 0 \end{bmatrix} = -Q$

Thus $Q = \frac{1}{2}(B - B')$ is a skew symmetric matrix.

Now P + Q =
$$\begin{bmatrix} 2 & \frac{-3}{2} & \frac{-3}{2} \\ \frac{-3}{2} & 3 & 1 \\ \frac{-3}{2} & 1 & -3 \end{bmatrix} + \begin{bmatrix} 0 & \frac{-1}{2} & \frac{-5}{2} \\ \frac{1}{2} & 0 & 3 \\ \frac{5}{2} & -3 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} = B$$

Thus, B is reresented as the sum of a symmetric and a skew symmetric matrix.

Ex.15 Show that BAB' is symmetric or skew-symmetric according as A is symmetric or skew-symmetric (where B is any square matrix whose order is same as that of A).

Sol. Case - I A is symmetric
$$\Rightarrow$$
 A' = A
(BAB')' = (B')'A'B' = BAB'
 \Rightarrow BAB' is symmetric.
Case - II A is skew-symmetric \Rightarrow A' = -A
(BAB')' = (B')'A'B' = B (-A) B'
= -(BAB') \Rightarrow BAB' is skew-symmetric

ADJOINT OF A MATRIX

If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A

Thus if $A = [a_{ij}]$ be a square matrix and F^{ij} be the cofactor of a_{ij} in |A|, then

$$\begin{aligned} & \text{Adj. A} = \begin{bmatrix} \mathsf{F}^{ij} \end{bmatrix}^{\mathsf{T}} \\ & \text{Hence if A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \text{ then} \\ & \text{Adj. A} = \begin{bmatrix} \mathsf{F}_{11} & \mathsf{F}_{12} & \dots & \mathsf{F}_{1n} \\ \mathsf{F}_{21} & \mathsf{F}_{22} & \dots & \mathsf{F}_{2n} \\ \dots & \dots & \dots & \dots \\ \mathsf{F}_{n1} & \mathsf{F}_{n2} & \dots & \mathsf{F}_{nn} \end{bmatrix}^{\mathsf{T}} \\ & \text{eg. if A} = \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix} \text{ then} \\ & \text{adj A} = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \end{aligned}$$

Properties of adjoint matrix :

If A, B are square matrices of order n and I_n is corresponding unit matrix, then

- (i) A (adj. A) = |A| I_n = (adj A) A
 (Thus A (adj A) is always a scalar matrix)
- (ii) $|adj A| = |A|^{n-1}$
- (iii) adj (adj A) = $|A|^{n-2} A$
- (iv) $|adj (adj A)| = |A|^{(n-1)^2}$
- (v) $adj (A^T) = (adj A)^T$
- (vi) adj (AB) = (adj B) (adj A)
- (vii) adj $(A^m) = (adj A)^m, m \in N$
- (viii) adj (kA) = k^{n-1} (adj. A), $k \in R$
- (ix) adj $(I_n) = I_n$
- (x) adj 0 = 0
- (xi) A is symmetric \Rightarrow adj A is also symmetric
- (xii) A is diagonal \Rightarrow adj A is also diagonal
- (xiii) A is triangular \Rightarrow adj A is also triangular

(xiv) A is singular \Rightarrow |adj A| = 0

Solved Examples

[1 3 5]
Ex.16 If $A = \begin{bmatrix} 3 & 5 & 1 \\ 5 & 4 & 2 \end{bmatrix}$, then adj. A is equal to -
$(A) \begin{vmatrix} -4 & -22 & 14 \end{vmatrix} (B) \begin{vmatrix} 4 & 22 & -14 \end{vmatrix}$
[14 4 –22]
(C) $4 -22 -14$ (D) None of these
-22 -14 -4
14 -4 -22
Sol. $adj. A = \begin{vmatrix} -4 & -22 & 14 \end{vmatrix}$
22 144]
[14 −4 −22]
= -4 -22 14
-22 14 -4
Ans.[A]

Ex.17 For a 3×3 skew-symmetric matrix A, show that adj A is a symmetric matrix.

Sol. A =
$$\begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$
 cof A = $\begin{bmatrix} c^2 & -bc & ca \\ -bc & b^2 & -ab \\ ca & -ab & a^2 \end{bmatrix}$
adj A = (cof A)' = $\begin{bmatrix} c^2 & -bc & ca \\ -bc & b^2 & -ab \\ ca & -ab & a^2 \end{bmatrix}$
which is symmetric.
Ex.18 If A = $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, then | adj (adj A) | is equal-
(A) 8 (B) 16 (C) 2 (D) 0
Sol. |A| = $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ = 2
 \therefore |adj (adj.A) | = |A|^{(n-1)^2} = |A|^{2^2}
[\therefore Here n = 3] = 2⁴ = 16 Ans.[B]

ELEMENTARY ROW TRANS-FORMATION OF MATRIX :

The following operations on a matrix are called as elementary row transformations.

(a) Interchanging two rows.

(b) Multiplications of all the elements of row by a nonzero scalar.

(c) Addition of constant multiple of a row to another row.

Note :

Similar to above we have elementary column transformations also.

Remarks : Two matrices A & B are said to be equivalent if one is obtained from other using elementary transformations. We write $A \approx B$.

If A is a square matrix of order m, and if these exists another square matrix of B of the same order m, such that AB = BA = I. then B is called the inverse matrix of A and it is denoted by A^{-1} . In that case A is said to be invertible.

Note :

- 1. A rectangular matrix does not possess inverse matrix, since for products BA and AB to be defined and to be equal, it is neccessary that matrices A and B should be square matrices of the same order.
- 2. If B is the inverse of A, then A is also the inverse of B.

INVERSE OF A MATRIX

If A and B are two matrices such that

AB = I = BA

then B is called the inverse of A and it is denoted by A^{-1} , thus

 $A^{-1} = B \iff AB = I = BA$

I. FINDING INVERSE USING ELEMENTRY OPERATIONS

(I) USING ROW TRANSFORMATIONS :

If A is a matrix such that A^{-1} exists, then to find A^{-1} using elementary row operations,

Step I : Write A = IA and

Step II : Apply a sequence of row operation on A = IA till we get, I = BA.

The matrix B will be inverse of A.

Note : In order to apply a sequence of elementary row operations on the matrix equation X = AB, we will apply these row operatdions simultaneously on X and on the first matrix A of the product AB on RHS.

(II) USING COLUMN RANSFORMATIONS:

If A is a matrix such that A^{-1} exists, then to find A^{-1} using elementary column operations,

Step I : Write A = AI and

Step II : Apply a sequence of column operations on A = AI till we get, I = AB.

The matrix B will be inverse of A.

Note : In order to apply a sequence of elementary column operations on the matrix equation X = AB, we will apply these row operatdions simultaneously on X and on the second matrix B of the product AB on RHS.

Method to find A-1 using elementary operations					
when A is a 2? 2 matrix					
Step 1	Make $a11 = 1$ either by operating				
then first operate R1 R2 and then (if need be).					
Step II	Make $a21 = o$ by the operation.				
Step III	Make $a22 = 1$ by the operation.				
Step IV	Make $a12 = 0$ by the operation.				

Solved Examples

Ex.19 Using elementary transformation. Find the inverse of the following matrices .

Sol.
$$A = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$

Then $A = IA \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$
operate $R_1 \rightarrow \frac{1}{4}R_1 = \begin{bmatrix} 1 & \frac{5}{4} \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix} A$
Form $R_2 \rightarrow R_2 - 3R_1$
 $= \begin{bmatrix} 1 & \frac{5}{4} \\ 0 & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & 0 \\ -\frac{3}{4} & 1 \end{bmatrix} A = \begin{bmatrix} 1 & \frac{5}{4} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & 0 \\ -3 & 1 \end{bmatrix} A$
From $R_2 \rightarrow 4R_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix} A$
From $R_1 \rightarrow R_1 - \frac{5}{4}R_2$
Hence $A^{-1} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}$
Ex.20 Obtain the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$
using elementary operations.
Sol. Write $A = IA$, i.e., $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$
or $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ (applying $R_1 \leftrightarrow R_2$)

or $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A$ (applying $R_3 \rightarrow R_3 - 3R_1$) or $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A$ (applying $R_1 \rightarrow R_1 - 2R_2$) or $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix} A$ (applying $R_2 \rightarrow R_2 + 5R_2$) or $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{vmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{vmatrix} A$ (applying $R_3 \rightarrow \frac{1}{2}R_3$) or $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A$ (Applying $R_1 \rightarrow R_1 + R_3$ or $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -3 & 1 \end{bmatrix} A$ (Applying $R_2 \rightarrow R_2 - 2R_3$) Hence $A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$

II. INVERSE USING DETERMINANT OF A MATRIX

To find inverse matrix of a given matrix A we use following formula $A^{-1} = \frac{\text{adj } A}{|A|}$

Thus A^{-1} exists $\Leftrightarrow |A| \neq 0$

- Note :
- (i) Matrix A is called invertible if A^{-1} exists.
- (ii) Inverse of a matrix is unique.

Properties of Inverse Matrix :

Let A and B are two invertible matrices of the same order, then

- (i) $(A^{T})^{-1} = (A^{-1})^{T}$ (ii) $(AB)^{-1} = B^{-1} A^{-1}$
- (iii) $(A^k)^{-1} = (A^{-1})^k$, $k \in N$ (iv) adj $(A^{-1}) = (adj A)^{-1}$

(v)
$$(A^{-1})^{-1} = A$$

(vi)
$$|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|} = |\mathbf{A}|^{-1}$$

- (vii) If A = diag $(a_1, a_2, ..., a_n)$, then A⁻¹ = diag $(a_1^{-1}, a_2^{-1}, ..., a_n^{-1})$
- (viii) A is symmetric matrix $\Rightarrow A^{-1}$ is symmetric matrix.
- (ix) A is triangular matrix and $|A| \neq 0 \Rightarrow A^{-1}$ is a triangular matrix.
- (x) A is scalar matrix $\Rightarrow A^{-1}$ is scalar matrix.
- (xi) A is diagonal matrix $\Rightarrow A^{-1}$ is diagonal matrix.
- (xii) $AB = AC \implies B = C$, iff $|A| \neq 0$.

Solved Examples

Ex.21 Inverse matrix of
$$\begin{bmatrix} 2 & -3 \\ -4 & 2 \end{bmatrix}$$
 is -
(A) $-\frac{1}{8} \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$ (B) $-\frac{1}{8} \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$
(C) $\frac{1}{8} \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$

Sol. Let the given matrix is A, then |A| = -8

and adj A =
$$\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$$

 $\therefore A^{-1} = \frac{1}{|\mathsf{A}|} \text{ adj } A = -\frac{1}{8} \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$
Ans.[A]

Ex.22 If
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and
 $M = AB$, then M^{-1} is equal to -
(A) $\begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1/3 & 1/3 \\ -1/3 & 1/6 \end{bmatrix}$
(C) $\begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/6 \end{bmatrix}$ (D) $\begin{bmatrix} 1/3 & -1/3 \\ -1/3 & 1/6 \end{bmatrix}$
Sol. $M = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$
 $|M| = 6$, adj $M = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$
 $M| = 6$, adj $M = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$
 $M| = 6$, adj $M = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$
 $M| = 6$, adj $M = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$
 $M| = 6$, adj $M = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta \end{bmatrix}$ (B) $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$
(C) $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ (D) None of these
Sol. $\begin{bmatrix} 1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1 \end{bmatrix}^{-1}$
 $= \frac{1}{\sec^2 \theta / 2} \begin{bmatrix} 1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1 \end{bmatrix}$
 \therefore Product $= \frac{1}{\sec^2 \theta / 2}$
 $\begin{bmatrix} 1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1 \end{bmatrix}$
 $= \frac{1}{\sec^2 \theta / 2} \begin{bmatrix} 1 - \tan \theta / 2 \\ 1 \end{bmatrix}$
 $= \frac{1}{\sec^2 \theta / 2} \begin{bmatrix} 1 - \tan \theta / 2 \\ 2 \\ \tan \theta / 2 & 1 \end{bmatrix}$
 $= \frac{1}{\sec^2 \theta / 2} \begin{bmatrix} 1 - \tan^2 \theta / 2 & -2 \tan \theta / 2 \\ 2 \\ \tan \theta / 2 & 1 \end{bmatrix}$
 $= \begin{bmatrix} \cos^2 \theta / 2 - \sin^2 \theta / 2 & -2 \sin \theta / 2 \\ 2 \\ \sin \theta / 2 & \cos \theta / 2 & \cos^2 \theta / 2 - \sin^2 \theta / 2 \end{bmatrix}$
 $= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$
Ans.[C]

Ex.24 If $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then verify that A adj A = |A|I. Also find A⁻¹ Sol. We have |A| = 1(16-9) - 3(4-3) + 3(3-4) $= 1 \neq 0$ Now $A_{11} = 7$, $A_{12} = -1$, $A_{13} = -1$, $A_{21} = -3$, $A_{22} = 1, A_{23} = 0, A_{31} = -3, A_{32} = 0, A_{33} = 1$ Therefore adj A = $\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ Now A(adj A) = $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ $=\begin{bmatrix}7-3-3&-3+3+0&-3+0+3\\7-4-3&-3+4+0&-3+0+3\\7-3-4&-3+3+0&-3+0+4\end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A|. I$ Also A⁻¹ $\frac{1}{|A|}$ adj A = $\frac{1}{1} \begin{vmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$ $= \begin{vmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$ **Ex.25** Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the

Ex.25 Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = O$, where I is 2×2 identity matrix and O is 2×2 zero matrix. Using the equation, find A^{-1} .

Sol. We have $A^2 = A \cdot A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$ Hence $A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$ Now $A^2 - 4A + I = 0$ Therefore AA - 4A = -Ior $AA(A^{-1}) - 4AA^{-1} = -IA^{-1}$ (Post multiplying by A^{-1} because $|A| \neq 0$)

or A (A A⁻¹) - 4I = - A⁻¹
or AI - 4I = - A⁻¹
or A⁻¹ = 4I - A =
$$\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Hence A⁻¹ = $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$
Ex.26 For two non-singular matrices A & B, show that

adj (AB) = (adj B) (adj A) **Sol.** We have (AB) (adj (AB)) = |AB| $I_n = |A| |B| I_n$ $A^{-1} (AB)(adj (AB)) = |A| |B| A^{-1}$

$$\Rightarrow B adj (AB) = |B| adj A (:: A^{-1} = \frac{1}{|A|} adj A)$$

$$\Rightarrow B^{-1} B adj (AB) = |B| B^{-1} adj A$$

$$\Rightarrow adj (AB) = (adjB) (adj A)$$

SYSTEM OF LINEAR SIMULTANEOUS EQUATIONS

Consider the system of linear non-homogeneous simultaneous equations in three unknowns x, y and z, given by $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$ and $a_3x + b_3y + c_3z = d_3$,

Matrix Method of Solution

Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$
It can be shown that $AX = B$

Then $X = A^{-1} B$

(a) $\Delta \neq 0$, then A⁻¹ exists and hence AX = B $\Rightarrow A^{-1}(AX) = A^{-1}B \Rightarrow x = A^{-1}B$

and therefore unique values of \mathbf{x} , \mathbf{y} and \mathbf{z} are obtained.

(b) We have $AX = B \implies ((adj A)A) X = (adj A) B \implies \Delta X = (adj A) B$.

If $\Delta = 0$, then $\Delta X = 0_{3 \times 1}$, zero matrix of order 3×1 . Now if (adj A) B = 0, then the system AX = B has infinitely many solution, else no solution.

Remember

A system of equation is called consistent if it has a least one solution. If the system has no solution, then it is called inconsistent.

Solved Examples

Ex.27 Solve the following equations by matrix method.

$$5 x + 3 y + z = 16$$

 $2 x + y + 3 z = 19$
 $x + 2 y + 4 z = 25$

Sol. Let
$$A = \begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 16 \\ 19 \\ 25 \end{bmatrix}$.

Then the matrix equation of the given system of equations becomes, AX = B.

Now
$$|A| = \begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} = 5 (4-6) - 3 (8-3) + 1 (4-1) = -22 \neq 0$$
.

Hence A is non-negative. Therefore the given system of equations will have the unique solution given by $X = A^{-1} B$.

Let C be the matrix whose elements are the solutions of the corresponding elements of A, then

$$C = \begin{bmatrix} -2 & -5 & 3 \\ -10 & 19 & -7 \\ 8 & -13 & -1 \end{bmatrix}$$

$$\therefore \text{ adj } A = C' = \begin{bmatrix} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{\text{adj } A}{|A|} = \frac{1}{-22} \begin{bmatrix} -2 & -5 & 3 \\ -10 & 19 & -7 \\ 8 & -13 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{22} & \frac{10}{22} & -\frac{8}{22} \\ \frac{5}{22} & -\frac{19}{22} & \frac{13}{22} \\ -\frac{3}{22} & \frac{7}{22} & \frac{1}{22} \end{bmatrix}$$

$$\therefore X = A^{-1} B = \begin{bmatrix} \frac{2}{22} & \frac{10}{22} & -\frac{8}{22} \\ \frac{5}{22} & -\frac{19}{22} & \frac{13}{22} \\ -\frac{3}{22} & \frac{7}{22} & \frac{1}{22} \end{bmatrix} \begin{bmatrix} 16 \\ 19 \\ 25 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

$$\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

$$\therefore x = 1, y = 2, z = 5$$