Inverse Trigonometric Functions

INTRODUCTION :

The student may be familiar about trigonometric functions viz sin x, cos x, tan x, cosec x, sec x, cot x with respective domains R, R, $R - \{(2n + 1) \pi/2\}$, $R - \{n\pi\}$, $R - \{(2n + 1) \pi/2\}$, $R - \{n\pi\}$ and respective ranges [-1, 1], [-1, 1], R, R - (-1, 1), R - (-1, 1), R. Correspondingly, six inverse trigonometric functions (also called inverse circular functions) are defined.

 $\sin^{-1}x$, $\cos^{-1}1x$, $\tan^{-1}1x$ etc. denote angles or real numbers whose sine is x, whose cosine is x and whose tangent is x, provided that the answers given are numerically smallest available. These are also written as arc sinx, arc cosx etc.

Let $\sin\theta = x$ then $\theta = \operatorname{Arc} \sin x$

$$\therefore$$
 $-1 \le \sin\theta \le 1$ and $\sin\theta = x$

$$\therefore -1 \le x \le 1$$

Thus, Arc sinx is defined only when $-1 \le x \le 1$

Clearly, for every $x \in [-1, 1]$, infinite number of values of Arc sinx will be obtained.

Thus, $\sin^{-1}x$ or arc sinx is the principal value of the angle whose sine is equal to x.

i.e.

- (i) $\sin\theta = x \Leftrightarrow \sin^{-1} x = \theta$
- (ii) $\cos\theta = x \iff \cos^{-1} x = \theta$
- (iii) $\tan \theta = x \Leftrightarrow \tan^{-1} x = \theta$
- (iv) $\cot \theta = x \Leftrightarrow \cot^{-1} x = \theta$
- (v) $\sec\theta = x \iff \sec^{-1} x = \theta$
- (vi) $\csc \theta = x \Leftrightarrow \csc^{-1}x = \theta$

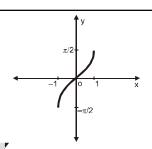
If there are two angles one positive & the other negative having same numerical value, then positive angle should be taken.

sin⁻¹x :

The symbol sin⁻¹x or arcsinx denotes the angle θ so that sin $\theta = x$. As a direct meaning, sin⁻¹x is not a function, as it does not satisfy the requirements for a rule to become a function. But by a suitable choice [-1, 1] as its domain and standardized set [$-\pi/2$, $\pi/2$] as its range, then rule sin⁻¹ x is a single valued function.

Thus sin⁻¹x is considered as a function with domain [-1, 1] and range $[-\pi/2, \pi/2]$.

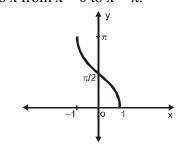
The graph of $y = \sin^{-1}x$ is as shown below, which is obtained by taking the mirror image, of the portion of the graph of $y = \sin x$, from $x = -\pi/2$ to $x = \pi/2$, on the line y = x.



$\cos^{-1}x$:

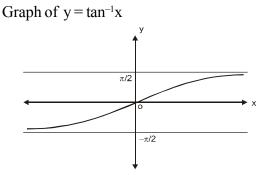
By following the discussions, similar to above, we have $\cos^{-1} x$ or $\arccos x$ as a function with domain [-1, 1] and range [0, π].

The graph of $y = \cos^{-1}x$ is similarly obtained as the mirror image of the portion of the graph of $y = \cos x$ from x = 0 to $x = \pi$.



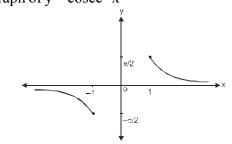
$tan^{-1}x$:

We get $\tan^{-1} x$ or arctanx as a function with domain R and range $(-\pi/2, \pi/2)$.



cosec⁻¹x :

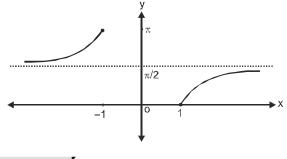
cosec⁻¹x or arccosec x is a function with domain R - (-1, 1) and range $[-\pi/2, \pi/2] - \{0\}$. Graph of y = cosec⁻¹x



sec⁻¹x :

sec⁻¹x or arcsec x is a function with domain R - (-1, 1) and range $[0, \pi] - {\pi/2}$.

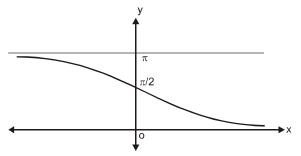
Graph of
$$y = \sec^{-1}x$$



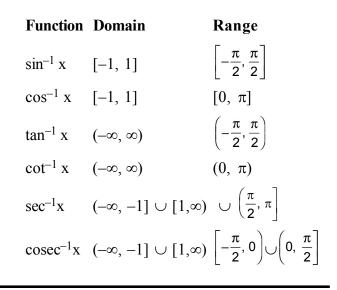
cot⁻¹ x :

 $\cot^{-1}x$ or arccot x is a function with domain R and range $(0, \pi)$

Graph of
$$y = \cot^{-1}x$$



DOMAIN AND RANGE OF INVERSE TRIGONOMETRIC FUNCTIONS



Note that :

(a) 1st quadrant is common to all the inverse functions.

- (b) 3rd quadrant is **not used** in inverse functions.
- (c) 4th quadrant is used in the CLOCKWISE

DIRECTION i.e.
$$-\frac{\pi}{2} \le y \le 0$$
.
(d) $\sin^{-1} x]_{max} = \frac{\pi}{2}$ and $\sin^{-1} x]_{min} = -\frac{\pi}{2}$
 $\cos^{-1} x]_{max} = \pi$ and $\cos^{-1} x]_{min} = 0$

Solved Examples

Ex.1 Find the value of $\tan\left[\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right]$. Sol. $\tan\left[\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right] = \tan\left[\frac{\pi}{3} + \left(-\frac{\pi}{6}\right)\right]$ $= \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}.$

Ex.2 Find domain of
$$\sin^{-1}(2x^2 - 1)$$

Sol. Let $y = \sin^{-1}(2x^2 - 1)$
For y to be defined $-1 \le (2x^2 - 1) \le 1$
 $\Rightarrow 0 \le 2x^2 \le 2 \Rightarrow 0 \le x^2 \le 1 \Rightarrow x \in [-1, 1].$

Property 1 : "-x"

The graphs of $\sin^{-1}x$, $\tan^{-1}x$, $\csc^{-1}x$ are symmetric about origin.

Hence we get

$$\tan^{-1}(-x) = -\tan^{-1}x$$

 $\csc^{-1}(-x) = -\csc^{-1}x.$

 $\sin^{-1}(-x) = -\sin^{-1}x$

Also the graphs of $\cos^{-1}x$, $\sec^{-1}x$, $\cot^{-1}x$ are symmetric about the point $(0, \pi/2)$. From this, we get $\cos^{-1}(-x) = \pi - \cos^{-1}x$ $\sec^{-1}(-x) = \pi - \sec^{-1}x$ $\cot^{-1}(-x) = \pi - \cot^{-1}x$. Property 2 : T(T⁻¹)

(i) $\sin(\sin^{-1}x) = x, -1 \le x \le 1$

Proof:

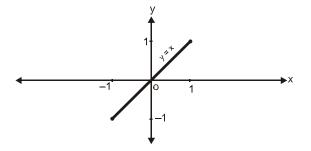
- Let $\theta = \sin^{-1}x$. Then $x \in [-1, 1]$ & $\theta \in [-\pi/2, \pi/2]$.
- \Rightarrow sin $\theta = x$, by meaning of the symbol

 $\Rightarrow \sin(\sin^{-1}x) = x$

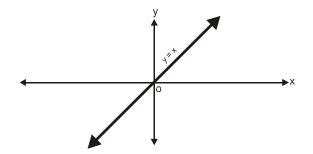
Similar proofs can be carried out to obtain

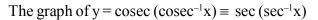
- (ii) $\cos(\cos^{-1}x) = x$, $-1 \le x \le 1$
- (iii) $\tan(\tan^{-1}x) = x, \quad x \in \mathbb{R}$
- $(iv) \cot (\cot^{-1} x) = x, \qquad x \in \mathbb{R}$
- (v) $\sec(\sec^{-1}x) = x$, $x \le -1, x \ge 1$
- (vi) cosec (cosec⁻¹ x) = x, $|x| \ge 1$

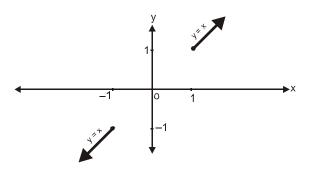
The graph of
$$y = \sin(\sin^{-1}x) \equiv \cos(\cos^{-1}x)$$

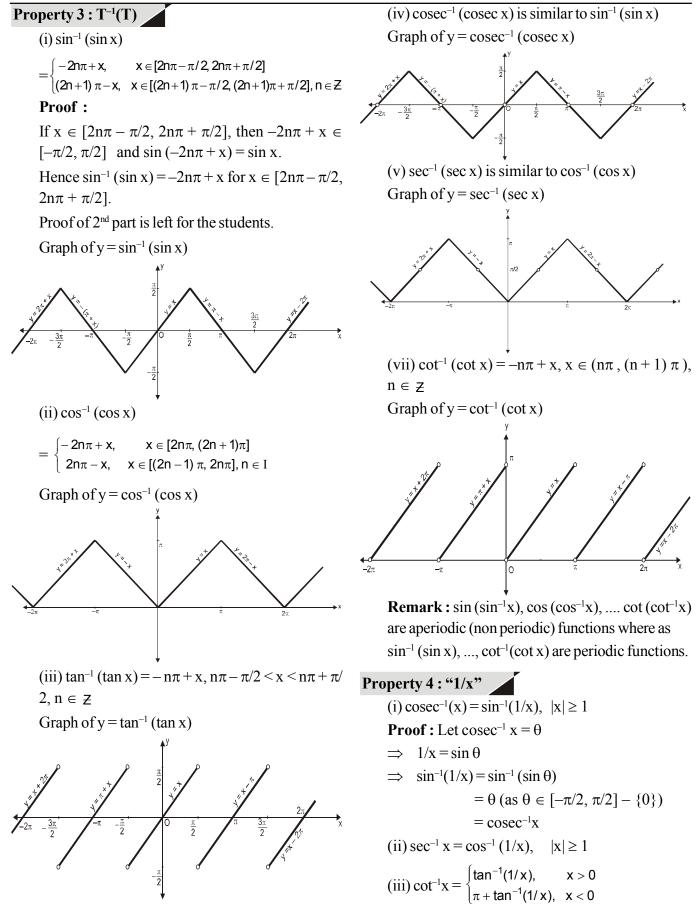


The graph of
$$y = \tan(\tan^{-1}x) \equiv \cot(\cot^{-1}x)$$



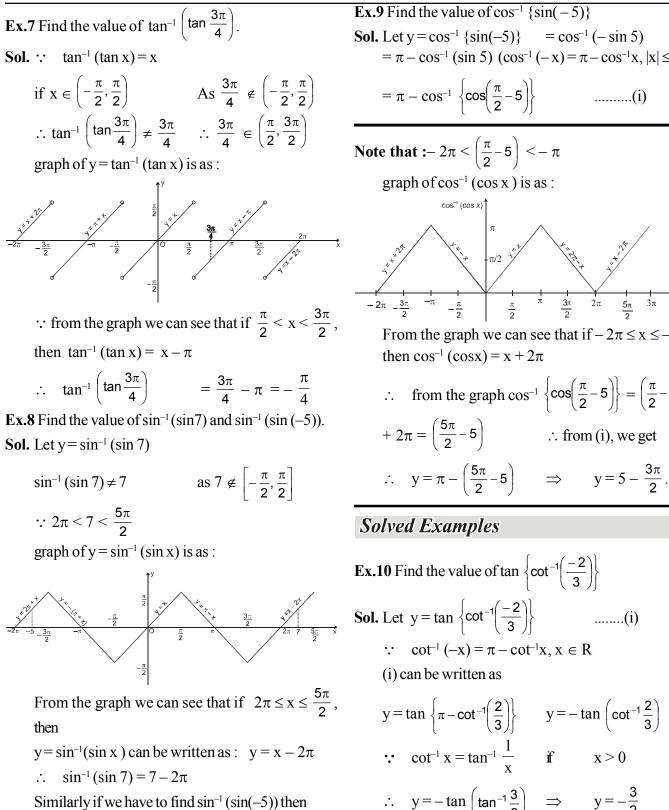






Property 5 : " $\pi/2$ " (i) $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}, -1 \le x \le 1$ **Proof**: Let $A = \sin^{-1}x$ and $B = \cos^{-1}x$ \Rightarrow sin A = x and cos B = x $\sin A = \cos B$ \Rightarrow $\sin A = \sin (\pi/2 - B)$ \Rightarrow $A = \pi/2 - B$, because A and $\pi/2 - B \in [-\pi/2, \pi/2]$ \Rightarrow A + B = $\pi/2$. Similarly, we can prove (ii) $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R}$ (iii) $\operatorname{cosec}^{-1} x + \operatorname{sec}^{-1} x = \frac{\pi}{2}, |x| \ge 1$ **Property- 6 Conversion Property** Let $\sin^{-1} x = y$ Н Ρ в \Rightarrow x = sin y \Rightarrow cosec y = $\left(\frac{1}{x}\right)$ \Rightarrow y = cosec⁻¹ $\left(\frac{1}{x}\right)$ $\Rightarrow \sin^{-1}x = \csc^{-1}\left(\frac{1}{x}\right)$. Hence (i) $\sin^{-1}x = \csc^{-1}\left(\frac{1}{x}\right)$ & $\csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right)$ Similarly the following results can be obtained (ii) $\cos^{-1}x = \sec^{-1}\left(\frac{1}{x}\right) \& \sec^{-1}x = \cos^{-1}\left(\frac{1}{x}\right)$ (iii) $\tan^{-1}x = \cot^{-1}\left(\frac{1}{x}\right) \& \cot^{-1}x = \tan^{-1}\left(\frac{1}{x}\right)$

Solved Examples **Ex.3** $\cos^{-1} \cos\left(\frac{7\pi}{6}\right) =$ (A) $\frac{7\pi}{6}$ (B) $\frac{5\pi}{c}$ (C) $\frac{\pi}{6}$ (D) None of these Sol. $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) \neq \frac{7\pi}{6}$ [Because $\frac{7\pi}{6}$ does not lie between 0 and π] Now, $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left|\cos\left(2\pi - \frac{5\pi}{6}\right)\right|$ $\left(\because \frac{7\pi}{6} = 2\pi - \frac{5\pi}{6}\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right)$ $[:: \cos(2\pi - \theta) = \cos\theta]$ $=\frac{5\pi}{6}$ Ans.[B] **Ex.4** sin $\{\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2}\} =$ (B) - 1(A) 0 (C) 2 (D) 1 **Sol.** sin $\{\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2}\}$ $=\sin\left(\frac{\pi}{2}\right)\left(\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right) = 1$ Ans.[D] **Ex.5** sin⁻¹ $\left(\frac{2}{5}\right) =$ (A) $\cos^{-1}\left(\frac{3}{5}\right)$ (B) $\tan^{-1}\left(\frac{3}{5}\right)$ (C) $\operatorname{cosec}^{-1}\left(\frac{5}{2}\right)$ (D) None of these **Sol.** We know that $\sin^{-1}x = \csc^{-1}\left(\frac{1}{x}\right)$ $\Rightarrow \sin^{-1}\left(\frac{2}{5}\right) = \csc^{-1}\left(\frac{5}{2}\right)$ Ans. [C] **Ex.6** Find the value of cosec $\left\{ \cot\left(\cot^{-1}\frac{3\pi}{4}\right) \right\}$. **Sol.** :: $\cot(\cot^{-1} x) = x, \forall x \in \mathbb{R}$ $\therefore \cot\left(\cot^{-1}\frac{3\pi}{4}\right) = \frac{3\pi}{4}$ $\operatorname{cosec}\left\{\operatorname{cot}\left(\operatorname{cot}^{-1}\frac{3\pi}{4}\right)\right\}=\operatorname{cosec}\left(\frac{3\pi}{4}\right)=\sqrt{2}.$



: $-2\pi < -5 < -\frac{3\pi}{2}$ from the graph of $\sin^{-1}(\sin x)$, we can say that *.*..

 $\sin^{-1}(\sin(-5)) = 2\pi + (-5) = 2\pi - 5$

Ex.9 Find the value of
$$\cos^{-1} {\sin(-5)}$$

Sol. Let $y = \cos^{-1} {\sin(-5)} = \cos^{-1} (-\sin 5)$
 $= \pi - \cos^{-1} {\sin 5} (\cos^{-1} (-x) = \pi - \cos^{-1}x, |x| \le 1)$
 $= \pi - \cos^{-1} {\cos\left(\frac{\pi}{2} - 5\right)}$ (i)
Note that $:-2\pi < \left(\frac{\pi}{2} - 5\right) < -\pi$
graph of $\cos^{-1} (\cos x)$ is as :
 $\cos^{-1} (\cos x)$ is as :
 $\cos^{-1} (\cos x)$ is as :
 $\cos^{-1} (\cos x)$ is as :
From the graph we can see that if $-2\pi \le x \le -\pi$,
then $\cos^{-1} (\cos x) = x + 2\pi$
 \therefore from the graph $\cos^{-1} {\cos\left(\frac{\pi}{2} - 5\right)} = \left(\frac{\pi}{2} - 5\right)$
 $+2\pi = \left(\frac{5\pi}{2} - 5\right)$ \therefore from (i), we get

Solved Examples

Ex.10 Find the value of
$$\tan \left\{ \cot^{-1}\left(\frac{-2}{3}\right) \right\}$$

Sol. Let $y = \tan \left\{ \cot^{-1}\left(\frac{-2}{3}\right) \right\}$ (i)
 $\because \quad \cot^{-1}(-x) = \pi - \cot^{-1}x, x \in \mathbb{R}$
(i) can be written as
 $y = \tan \left\{ \pi - \cot^{-1}\left(\frac{2}{3}\right) \right\}$ $y = -\tan \left(\cot^{-1}\frac{2}{3} \right)$
 $\because \quad \cot^{-1}x = \tan^{-1}\frac{1}{x}$ if $x > 0$
 $\therefore \quad y = -\tan \left(\tan^{-1}\frac{3}{2} \right) \implies y = -\frac{3}{2}$
Ex.11 Find the value of $\sin \left(\tan^{-1}\frac{3}{4} \right)$.
Sol. $\sin \left(\tan^{-1}\frac{3}{4} \right) = \sin \left(\sin^{-1}\frac{3}{5} \right) = \frac{3}{5}$

Ex.12 Find the value of $\tan\left(\frac{1}{2}\cos^{-1}\frac{\sqrt{5}}{3}\right)$
Sol. Let $y = \tan\left(\frac{1}{2}\cos^{-1}\frac{\sqrt{5}}{3}\right)$ (i)
Let $\cos^{-1}\frac{\sqrt{5}}{3} = \theta \implies \theta \in \left(0, \frac{\pi}{2}\right)$ and $\cos \theta = \frac{\sqrt{5}}{3}$
\therefore (i) becomes $y = \tan\left(\frac{\theta}{2}\right)$ (ii)
$\therefore \tan^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{1 + \cos \theta} = \frac{1 - \frac{\sqrt{5}}{3}}{1 + \frac{\sqrt{5}}{3}} = \frac{3 - \sqrt{5}}{3 + \sqrt{5}}$ $= \frac{(3 - \sqrt{5})^2}{4}$
4
$\tan \frac{\theta}{2} = \pm \left(\frac{3-\sqrt{5}}{2}\right) \qquad \dots $
$\frac{\theta}{2} \in \left(0, \frac{\pi}{4}\right) \qquad \Rightarrow \qquad \tan \frac{\theta}{2} > 0$
$\therefore \text{from (iii), we get } y = \tan \frac{\theta}{2} = \left(\frac{3 - \sqrt{5}}{2}\right)$
Ex 13 Find the value of $\cos(2\cos^{-1}x + \sin^{-1}x)$

Ex.13 Find the value of cos $(2\cos^{-1}x + \sin^{-1}x)$ when $x = \frac{1}{5}$

Sol.
$$\cos\left(2\cos^{-1}\frac{1}{5} + \sin^{-1}\frac{1}{5}\right)$$

= $\cos\left(\cos^{-1}\frac{1}{5} + \sin^{-1}\frac{1}{5} + \cos^{-1}\frac{1}{5}\right)$
= $\cos\left(\frac{\pi}{2} + \cos^{-1}\frac{1}{5}\right) = -\sin\left(\cos^{-1}\left(\frac{1}{5}\right)\right)$ (i)
= $-\sqrt{1 - \left(\frac{1}{5}\right)^2} = -\frac{2\sqrt{6}}{5}$.

IDENTITIES FOR SUM & DIFFERENCE OF INVERSE TRIGONOMETRIC FUNCTIONS

(i)
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

if $x > 0$, $y > 0$ and $xy < 1$

(ii)
$$\tan^{-1}x + \tan^{-1}y = \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
,
if $x > 0, y > 0$ and $xy > 1$
(iii) $\tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x-y}{1+xy}\right)$
(iv) $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z$
 $= \tan^{-1}\left[\frac{x+y+z-xyz}{1-xy-yz-zx}\right]$
(vi) $\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}[x\sqrt{1-y^2} \pm y\sqrt{1-x^2}]$,
if $x, y \ge 0$ and $x^2 + y^2 \le 1$.
(vii) $\sin^{-1}x \pm \sin^{-1}y$
 $= \pi - \sin^{-1}[x\sqrt{1-y^2} \pm y\sqrt{1-x^2}]$,
if $x, y \ge 0$ and $x^2 + y^2 > 1$.
(viii) $\cos^{-1}x \pm \cos^{-1}y$
 $= \cos^{-1}[xy \mp \sqrt{1-x^2} \sqrt{1-y^2}]$,
if $x, y > 0$ and $x^2 + y^2 \le 1$.
(ix) $\cos^{-1}x \pm \cos^{-1}y$
 $= \pi - \cos^{-1}[xy \mp \sqrt{1-x^2} \sqrt{1-y^2}]$,
if $x, y > 0$ and $x^2 + y^2 > 1$.
(ix) $\cos^{-1}x \pm \cos^{-1}y$
 $= \pi - \cos^{-1}[xy \mp \sqrt{1-x^2} \sqrt{1-y^2}]$,
if $x, y > 0$ and $x^2 + y^2 > 1$.
(x) $\cot^{-1}x \pm \cot^{-1}y = \cot^{-1}\left[\frac{xy \mp 1}{y \pm x}\right]$

Solved Examples

Ex.14
$$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) =$$

(A) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (B) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$
(C) $\tan^{-1}\left(\frac{3}{5}\right)$ (D) $\tan^{-1}\left(\frac{1}{2}\right)$
Sol. $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} + \frac{2}{9}}\right)$
 $= \tan^{-1}\left(\frac{17}{34}\right) = \tan^{-1}\left(\frac{1}{2}\right)$ Ans.[D]
Ex.15 The value of
 $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$ is equal to-
(A) $\frac{\pi}{4}$ (B) $\frac{5\pi}{12}$
(C) $\frac{3\pi}{4}$ (D) $\frac{13\pi}{12}$

Sol.
$$\tan^{-1}(1) + \cot^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

$$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6} = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4} \qquad \text{Ans.[C]}$$
Ex.16 The number of solution of the equation
 $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1} 3x$ is-
(A) 1 (B) 2
(C) 3 (D) 4
Sol. The given equation can be written as
 $\tan^{-1}(x-1) + \tan^{-1}(x+1) = \tan^{-1} 3x - \tan^{-1}x$
 $\Rightarrow \tan^{-1} \frac{x-1+x+1}{1-(x-1)(x+1)} = \tan^{-1} \frac{3x-x}{1+3x^2}$
 $\Rightarrow \frac{2x}{2-x^2} = \frac{2x}{1+3x^2} \Rightarrow x + 3x^3 = 2x - x^3$
 $\Rightarrow 4x^3 - x = 0 \Rightarrow x(4x^2 - 1) = 0$
 $\Rightarrow x = 0, x = \pm \frac{1}{2} \qquad \text{Ans.[C]}$

INVERSE TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

(i)
$$2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2})$$
, if $-1 \le x \le 1$
(ii) $2\cos^{-1}x = \cos^{-1}(2x^2 - 1)$, if $-1 \le x \le 1$
(iii) $2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$
 $= \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$
(iv) $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$
(v) $3\cos^{-1}x = \cos^{-1}(4x^3 - 3x)$
(vi) $3\tan^{-1}x = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$

Solved Examples

Ex.17
$$\cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) =$$

(A) $\frac{\pi}{2}$ (B) $\cos^{-1}\left(\frac{140}{221}\right)$
(C) $\frac{\pi}{4}$ (D) None of these
Sol. $\cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right)$

$$= \cos^{-1}\left(\frac{15}{17}\right) + \cos^{-1}\left(\frac{1-\frac{1}{25}}{1+\frac{1}{25}}\right)$$
$$= \cos^{-1}\left(\frac{15}{17}\right) + \cos^{-1}\left(\frac{12}{13}\right)$$
$$= \cos^{-1}\left(\frac{15}{17} \times \frac{12}{13} - \sqrt{1-\left(\frac{15}{17}\right)^2}\sqrt{1-\left(\frac{12}{13}\right)^2}\right)$$
$$= \cos^{-1}\left(\frac{140}{221}\right) \quad \text{Ans.[B]}$$

Ex.18 The value of

sin(2 tan⁻¹
$$\frac{1}{3}$$
) + cos (tan⁻¹ $2\sqrt{2}$) is-
(A) $\frac{6}{15}$ (B) $\frac{7}{15}$
(C) $\frac{14}{15}$ (D) None of these

Sol. Let $\tan^{-1}\frac{1}{3} = \alpha$ and $\tan^{-1} 2\sqrt{2} = \beta$. Then $\tan \alpha$ $= \frac{1}{3}$ and $\tan \beta = 2\sqrt{2}$, so that $\sin (2 \tan^{-1}\frac{1}{3}) + \cos (\tan^{-1}2\sqrt{2})$ $= \sin 2\alpha + \cos\beta = \frac{2\tan\alpha}{1 + \tan^2\alpha} + \frac{1}{\sqrt{1 + \tan^2\beta}}$ $= \frac{2\cdot\frac{1}{3}}{1 + \frac{1}{9}} + \frac{1}{\sqrt{1 + 8}} = \frac{2}{3}\cdot\frac{9}{10} + \frac{1}{3}$ $= \frac{3}{5} + \frac{1}{3} = \frac{14}{15}$ Ans.[C]

MISCELLENEOUS RESULTS
(i)
$$\tan^{-1}\left[\frac{x}{\sqrt{a^2 - x^2}}\right] = \sin^{-1}\left(\frac{x}{a}\right)$$

(ii) $\tan^{-1}\left[\frac{3a^2x - x^3}{a(a^2 - 3x^2)}\right] = 3 \tan^{-1}\left(\frac{x}{a}\right)$
(iii) $\tan^{-1}\left[\frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}}\right] = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$
(iv) $\sin^{-1}(x) = \cos^{-1}\left(\sqrt{1 - x^2}\right) = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right)$
 $= \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) = \sec^{-1}\left(\frac{1}{\sqrt{1 - x^2}}\right) = \csc^{-1}\left(\frac{1}{x}\right)$

$$(v) \cos^{-1}x = \sin^{-1}\left(\sqrt{1-x^{2}}\right) = \tan^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$$
$$= \cot^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) = \sec^{-1}\left(\frac{1}{x}\right) = \csc^{-}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$$
$$(vi) \tan^{-1}x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)$$
$$= \cot^{-1}\left(\frac{1}{x}\right) = \sec^{-1}\left(\sqrt{1+x^{2}}\right)$$
$$= \csc^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right)$$