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INTRODUCTION OF WAVES

Wave motion is the phenomenon that can be observed almost everywhere around us, as well it appears
in almost every branch of physics. Surface waves on bodies of matter are commonly observed. Sound
waves and light waves are essential to our perception of the environment. All waves have a similar
mathematical description, which makes the study of one kind of wave useful for the study of other kinds
of waves. In this chapter, we will concentrate on string waves, which are type of a mechanical waves.
Mechanical waves require a medium to travel through. Sound waves, water waves are other examples
of mechanical waves. Light waves are not mechanical waves, these are electromagnetic waves which
do not require medium to propagate.

Mechanical waves originate from a disturbance in the medium (such as a stone dropping in a pond) and the
disturbance propagates through the medium. The forces between the atoms in the medium are responsible for
the propagation of mechanical waves. Each atom exerts a force on the atoms near it, and through this force
the motion of the atom is transmitted to the others. The atoms in the medium do not, however, experience any
net displacement. As the wave passes, the atoms simply move back and forth. Again for simplicity, we
concentrate on the study of harmonic waves (that is those that can be represented by sine and cosine
functions).

Note : A wave is a disturbance that propagates in space, transports energy and momentum from one point to another

without the transport of matter. e.g. The ripples on a pond (water waves), the sound we hear, visible light, radio

and TV signals etc.

CLASSIFICATION OF WAVES

Wave classification
According to

Necessity 
of medium

Propagation 
of energy

Vibration 
of particle

(i)  Elastic or mechanical wave
(ii) Electro magnetic wave 
    (E.M. wave) or non-mech.

(i) Progressive
(ii) Sationary

(i) Transverse
(ii) Longitudinal

Dimension

(i) One dimensional
(ii) Two dimensional
(iii) Three dimentional

1. Based on medium necessity :- A wave may or may not require a medium for its propagation. The waves which do not
require medium for their propagation are called non-mechanical, e.g. light, heat (infrared), radio waves etc. On the
other hand the waves which require medium for their propagation are called mechanical waves. In the propagation
of mechanical waves elasticity and density of the medium play an important role therefore mechanical waves are also
known as elastic waves. e.g. Sound waves in water, seismic waves in earth's crust.
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2. Based on energy propagation :- Waves can be divided into two parts on the basis of energy propagation
(i) Progressive wave (ii) Stationary waves. The progressive wave propagates with constant velocity in a medium. In
stationary waves particles of the medium vibrate with different amplitude but energy does not propagate.

3. Based on direction of propagation :- Waves can be one, two or three dimensional according to the number of
dimensions in which they propagate energy. Waves moving along strings are one-dimensional. Surface waves or
ripples on water are two dimensional , while sound or light waves from a point source are three dimensional.

4. Based on the motion of particles of medium :

Waves are of two types on the basis of          

Direction of
Propagation

Direction of
Disturbance Direction of

Propagation
Direction of
Disturbance

Longitudinal waveTransverse wave

motion of particles of the medium.

(i) Longitudinal waves

(ii) Transverse waves

In the transverse wave the direction associated with the disturbance (i.e. motion of particles of the medium) is at
right angle to the direction of propagation of wave while in the longitudinal wave the direction of disturbance is

along the direction of propagation.

TRANSVERSE WAVE MOTION
Mechanical transverse waves produce in such type of medium which have shearing property, so they are known
as shear wave or S-wave

Note :- Shearing is the property of a body by which it changes

            its shape on application of force.

 Mechanical transverse waves are generated

    only  in solids & surface of liquid.

In this individual particles of the medium execute        

SHM about their mean position in direction r

to the direction of propagation of wave motion.

A crest is a portion of the medium, which is raised temporarily above the normal position of rest of particles of the
medium , when a transverse wave passes.

A trough is a portion of the medium, which is depressed temporarily  below the normal position of rest of particles
of the medium , when a transverse wave passes.

LONGITUDINAL WAVE MOTION
In this type of waves, oscillatory motion of the medium  particles produces regions of compression (high pressure)
and rarefaction (low pressure) which propagated in space with time (see figure).



WAVE MOTION

118
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

+91-9350679141

Note : The regions of high particle density are called compressions and regions of low particle density are called
rarefactions.
The propagation of sound waves in air is visualized as the propagation of pressure or density fluctuations. The
pressure fluctuations are of the order of 1 Pa, whereas atmospheric pressure is 105 Pa.

Mechanical Waves in Different Media
(i) A mechanical wave will be transverse or longitudinal depends on the nature of medium and mode of

excitation.
(ii) In strings mechanical waves are always transverse when string is under a tension. In gases and liquids

mechanical waves are always longitudinal e.g. sound waves in air or water. This is because fluids cannot sustain
shear.

(iii) In solids, mechanical waves (may be sound) can be either transverse or longitudinal depending on the mode of
excitation. The speed of the two waves in the same solid are different. (Longitudinal waves travels faster than
transverse waves). e.g., if we struck a rod at an angle as shown in fig. (A) the waves in the rod will be transverse
while if the rod is struck at the side as shown in fig. (B) or is rubbed with a cloth the waves in the rod will be
longitudinal. In case of vibrating tuning fork waves in the prongs are transverse while in the stem are longitudinal.

Further more in case of seismic waves produced by Earthquakes both S (shear) and P (pressure) waves are
produced simultaneously which travel through the rock in the crust at different speeds
[vS  5 km/s while vP  9 km/s] S–waves are transverse while P–waves longitudinal.
Some waves in nature are neither transverse nor longitudinal but a  combination

Ripple

A

B

v

of the two. These waves are called 'ripple' and waves on the surface of a
liquid are of this type. In these waves particles of the medium vibrate up and
down and back and forth simultaneously describing ellipses in a vertical
plane.

CHARACTERISTICS OF WAVE MOTION
Some of the important characteristics of wave motion are as follows :

(i) In a wave motion, the disturbance travels through the medium due to repeated periodic oscillations of the
particles of the medium about their mean positions.

(ii) The energy is transferred from place to another without any actual transfer of the particles of the medium.
(iii) Each particle receives disturbance a little later than its preceding particle i.e., there is a regular phase

difference between one particle and the next.
(iv) The velocity with which a wave travels is different from the velocity of the particles with which they vibrate about

their mean positions.
(v) The wave velocity remains constant in a given medium while the particle velocity changes continuously during

its vibration about the mean position. It is maximum at the mean position and zero at the extreme position.
(vi) For the propagation of a mechanical wave, the medium must possess the properties of inertia, elasticity and

minimum friction amongst its particles.
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DESCRIBING WAVES :
Two kinds of graph may be drawn - displacement-distance and displacement-time.
A displacement - distance graph for a transverse mechanical wave shows the displacement y of the vibrating
particles of the transmitting medium at different distance x from the source at a certain instant i.e. it is like a
photograph showing shape of the wave at that particular instant.
The maximum displacement of each particle from its undisturbed position is the amplitude of the wave. In the
figure, it is OA or OB.

The wavelength  of a wave is generally taken as the distance between two successive crests or two successive
trough. To be more specific, it is the distance between two consecutive points on the wave which have same
phase.
A displacement-time graph may also be drawn for a wave motion, showing how the displacement of one
particle at a particular distance from the source varies with time. If this is simple harmonic variation then the
graph is a sine curve.

Some important terms connected with wave motion
(i) Wavelength () [length of one wave]

Distance travelled by the wave during the time, any one particle of the medium completes one vibration about its
mean position. We may also define wavelength as the distance between any two nearest particles of the medium,
vibrating in the same phase.

(ii) Frequency (n) :Number of vibrations (Number of complete wavelengths) complete by a particle in one second.
(iii) Time period (T) : Time taken by wave to travel a distance equal to one wavelength.
(iv) Amplitude (A)  : Maximum displacement of vibrating particle from its equilibrium position.

(v) Angular frequency () : It is defined as  = 
2 2 n

 


(vi) Phase : Phase is a quantity which contains all information related to any vibrating particle in a wave. For equation
 y = A sin (t – kx); (t – kx) = phase.

(vii) Angular wave number (k) : It is defined as k = 
2


(viii) Wave number ( 
r ) : It is defined as 

r  =
1 k

2


 
= number of waves in a unit length of the wave pattern.

Wave Function

The disturbance created by a wave, given as a function of time and distance   
x

y

v

y
P

x

is called wave function. It gives idea about the characteristics of a wave.
It may be particle displacement in case of wave in string and sound wave
or it may be variation in pressure and density for sound waves.
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Imagine a horizontal string stretched in the x direction. Let y measure the displacement of any particle of
the string from its equilibrium position, perpendicular to the string. Let the string is plucked on the left end
such that a wave travels to the positive x - direction. The vertical displacement y of the particle P is given

by    y = f (x, t)

The disturbance which is at P now (i.e. at time t) was at x = 0, time 
x
v earlier i.e. at time 

xt
v

  
 

i.e. ( , ) 0, xy f x t f x t
v

     
 


xy f t
v

   
 

Also of the wave moves towards nagative x - direction

then 0( ) 0, xy f x t f x t
v

     
 

i.e.  
xy f t
v

   
 


xy = f t ±
v

 
 
 

Travelling sine wave in one dimension

The wave equation 
xy f t
v

   
 

is quite general. If holds for ability wave shapes, and for transverse as

well as for longitudinal waves.
When, under the effect of a wave, the motion of the particle about its mean position is SHM the wave
is called sine wave or harmonic wave.
The displacement of the particle at x at time t will be for a sine wave (like wave in a string) will be

sin xy A t
v

    
 

y = A sin(t – kx)

where term  is called angular frequence,  
2 2 f
T
  

and 
2k

v
 


   is called angular wave number..

The wave equation y = A sin(t – kx)says that at x = 0 and t = 0, y = 0. This is not necessarily the case.
For the some conditions, y may not equal to zero. Therefore, the most general expression would involve
a phase constant , which allows for other possibilities,

Y = A sin(t – kx + )
The term (t – kx + ) is called the phase angle or simply phase of the wave. Two waves with the same
phase (or phase differing by a multiple of 2) are said to be "in phase". They execute the same motion
at the same time.

Phase Angle
(t – kx + ) which is called the phase of wave is actually the phase angle at time t of a particle mean
position of which is at a distance x from reference point.
For the particle, mean position of which is at x = 0, phase angle = t +  . For this particle only, the phase
angle at t = 0 i.e. angle at t = 0 i.e. initial phase angle = .
Thus  is the initial (at t = 0) phase angle of the particle which is at x = 0.
For example if the particle at x = 0 was at
(i) its mean position and was moving in positive direction then  = 0

(ii) positive extreme position, 
2
 
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Wave Velocity and Particle Velocity
Wave velocity is the velocity of the disturbance which propagates through a medium. It only depends on
the properties of the medium and is independent of time and position.
Particle velocity (vp) is the rate at which particle's displacement vary as function of time.
If Y = A sin(t ± kx + )

 cos( )p
yv A t kx
t

   


   

The difference between the wave velocity v and the velocity of a particle     v

 y
 y =vp

of the medium 
y
t




 
 
 

 can be understood with the help of a transverse

progressive in shown in the figure.

The velocity of particle on a string given by 
y
t


  is perpendicular to wave velocity v for the transverse

wave.
The acceleration of the particle is obtained by differentiating particle velocity w.r.t. time

2
2

2

y y
t

 




The above equation shows that acceleration of particle is directly proportional to its displacement from equilibrium
position, i.e. the particles of the medium execute simple harmonic motion.

Ex. The equation of a transverse wave in a stretched wire is given by :

2sin 2
0.01 30

t xy        

where t is in sec. and x & y are in cm.
Find :
(a) amplitude (b) frequency (c) wavelength and (d) speed of the wave

Sol. Comparing the given equation with the standard equation
2 2siny A t x
T
 


   
 

(a) Amplitude, A = 2 cm (b) The period, T = 0.01 s   Frequency, 
1 100f Hz
T

 

(c) Wavelength  = 30 cm (d) Velocity of the wave v = f = 30 × 100 = 3000 cm/s = 3 m/s

The Wave Equation
By using wave function sin( )y t kx    , we can describe the motion of any point on the string.

x–constant

dyv =
dt

 
       

y = ωAcos(ωt – kx + )
t





......(1)

x–constant

dva =
dt

 
       

2
2

2
v y= = –ω Asin(ωt – kx + )
t t

 


 
......(2)

Further, slope of y vs x graph is

t –constant

dy
dx
 
      

y = –kAcos(ωt – kx + )
x





......(3)



WAVE MOTION

122
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

+91-9350679141


2

2
2 sin( )y k A t kx

x
 

   


......(4)

From (1) and (3)
y y
t k x

      
 vp = –vw × slope ......(A)
i.e. if the slope at any point is negative, particle velocity is positive and vice-versa, for a wave moving

along positive x and i.e. vw is slope.

For example, consider two points A and B on the y-x curve for a wave as shown. The wave is moving along
positive x-axis.

Slope at A is positive therefore at the given moment, its velocity is negative. That means it is coming downward.
Reverse is the situation for particle at point B.
Now using equation (2) and (4)

2 2 2 2

2 2 2 2

1y k y y
x x v t
  

 
  

......(B)

dy dyvx
dt dx

 
2 2

2
2 2

d y d yv
dt dx

 
   

 
The equation (B) known as the linear wave equation of differential equation representation of the travelling wave
model. We have developed the linear wave equation from a sinusoidal mechanical wave travelling  through a
medium, but all the travelling wave satisfy this equation. The linear wave equation successfully describes wave on
string, sound wave and also electromagnetic waves.

Ex. Verify that wave equation y = e2x–5t is a solution to linear equation of the wave (here x an y are can & t is in second.)
Sol. y = e2x – 5t

(2 5 )5 x ty e
t




  
2

2 5
2 25 x ty e

t



 ..... (i)

Also 2 52 x ty e
x




  
2

2 5
2 4 x ty e

x



 ..... (ii)

 from (i) and (ii)
2 2

2 2

4
25

y y
x t

 
 

 
  

 
Comparing with linear wave equation, we can observe the above function represents a wave travelling with a

speed of 
5
2

 cm/s.

Particle velocity, wave velocity and particle's acceleration :
In plane progressive harmonic wave particles of the medium oscillate simple harmonically about their mean
position. Therefore, all the formulae what we have read in SHM apply to the particles here also. For example,
maximum particle velocity is ± A at mean position and it is zero at extreme positions etc. Similarly maximum particle
acceleration is ±2A at extreme positions and zero at mean position. However the wave velocity is different from
the particle velocity. This depends on certain characteristics of the medium. Unlike the particle velocity which
oscillates simple harmonically (between + A and – A) the wave velocity is constant for given characteristics of
the medium.



PHYSICS FOR JEE MAIN & ADVANCED

124
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

+91-9350679141

Particle Velocity in Wave Motion :
The individual particles which make up the medium do not travel through the    
 medium with the waves. They simply oscillate about their equilibrium
positions. The instantaneous velocity of an oscillating particle of the medium,
through which a wave is travelling, is known as "Particle velocity".

Wave Velocity :
The velocity with which the disturbance, or planes of equal phase (wave front), travel through the medium is called
wave (or phase) velocity.

Relation Between Particle Velocity and Wave Velocity :

Wave equation :- y = A sin (t - kx), Particle velocity v=
y
t




= AA cos (t - kx).

Wave velocity = vP= T


= 2





=
k


, 
y
x



= - Ak cos (t–kx) =-
A

k cos (t - kx) = -

p

1
v

y
t




 
P

y 1 y
x v t
 

 
 

Note :
y
x



 represent the slope of the string (wave) at the point x.

Particle velocity at a given position and time is equal to negative of the product of wave velocity with slope of the
wave at that point at that instant.

Differential Equation of Harmonic Progressive Waves :
2

2

y
t




 = –A2 sin (t – kx)  
2

2

y
x



= – AkAk2 sin (t–kx)  
2

2

y
x



 = 
2

2 2
P

1 y
v t




Particle Velocity (VP) and Acceleration (AP) in a Sinusoidal Wave :
The acceleration of the particle is the second particle is the second partial derivative of y (x, t) with respect to t,

 
      



2
2 2

P 2

y(x, t)a A sin(kx t) y(x, t)
t

i.e., the acceleration of the particle equals –2 times its  displacement, which is the result we obtained for SHM.
Thus, aP = –2 (displacement)

Relation between Phase difference, Path difference & Time difference

Phase () 0

2


3
2


2
5
2


3

Wave length () 0

4


2

3
4



5
4
 3

2


Time-period  (T) 0
T
4

T
2

3
4
T

T
5
4
T 3

2
T

  
  
2 

 
T

T
Path difference = 


2

FHGIKJ Phase difference
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Ex. A progressive wave of frequency 500 Hz is travelling with a velocity of 360 m/s. How far apart are two points 60o

out of phase.

Sol. We know that for a wave v = f    So  = 
v
f

 = 
360
500  = 0.72 m

Phase difference  = 60o = (/180) x 60 = (/3) rad, so path difference x = 

2

() = 
0 72
2
.


x

3  = 0.12 m

Velocity of a Transverse Wave on a String
A transverse wave is produced in a taut string as shown in figure. Let us observe a small segment, such
as AB, on the string from the frame that moves with the wave. In this frame, the waves is stationary while
the string moves to the left at speed v.

(a) A wave moves to the right on string with respect to ground.
(b) In the frame moving with wave, the string moves toward the left.

The segment AB may be treated as a circular are some radius R, as shown in the figure (b).
Length of AB = R(2) 2R
If µ is the linear mass density of the string, then

m = µ(2R) = 2µR
The vertical component of tension in the string must provide the centripetal acceleration, therefore,

2

2 sin mvT
R

 

Since the angle  is small, sin 


2

2 (2 ) vT µR
R

  or
Tv
µ



Note that the velocity is measured with respect to the string.

Energy transferred by a progressive wave
As a wave propagates along string, it transfer energy consider a small element of length dx which is stretched
to the length dl under the influence of the wave.

21 ( )
2

ydK dm
t




   
 

......... (i)

If y = Asin (t – kx)   cos( )y A t kx
t

  


 

Also dm = µdx

 2 2 21 cos ( ).
2

dk µA t kx dx   ............. (ii)
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The potential energy of the element is equal to the work done to stretch it from dx to dl. Taking the tension
remaining uniform

dU = T(dl – dx) = 1dlT dx
dx
   

 = [sec 1]T dx   = 2 1/2(1 tan ) 1T dx   

For small amplitude waves  is very small



2

2 1/2 21 1(1 tan ) 1 tan 1
2 2

y
x

 


      
 

;



2

1
2

ydU T dx
x




   
 

(3)

but cos( )y Ak t kx
x

 


  

 2 2 21 cos ( )
2

dU TA k t kx dx  (4)

Total mechanical energy of the element is
dE = dK + dU

 from equation (2) and (4)
dE = µA2 2 cos2 (t – kx) dx (5)

Now, for an point, such as at x = 0, the average value of cos2 t for one time period is 
1
2

 2 21 ( )
2avdE µA dx

 Average energy per unit length

2 21
2

avdE
µA

dx


from equation (1)  dK  
2y

t



 
 
 

 K.E. of element is maximum for the particles of element A, since particle velocity is maximum at A.

From equation (3) ; dU  
2y

x



 
 
 

  P.E. is maximum where slope of y vs x graph is maximum i.e. at A only. Thus K.E. and P.E. is maximum
for same point such as A, similarly minimum for same point such as B.

Power transmitted by a progressive wave
The average power transmitted along the string by the wave is

.av av
av

dE dE dxP
dt dx dt

   2 21
2avP µA v
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Ex. Find speed of the wave generated in the string as in the situation shown.
Assume that the tension is not affected by the mass of the cord.

20 kg

500 gm/m

Sol. T = 20 × 10 = 200 N

s/m20
5.0

200v 

Ex. A taut string having tension 100 N and linear mass density 0.25 kg/m is               
used inside a cart to generate a wave pulse starting at the left end, as
shown. What should be the velocity of the cart so that pulse remains
stationary w.r.t. ground.

Sol. Velocity of pulse = s/m20T




Now CGPCPG vvv




0 = 20 i + CGv


CGv


 = – 20i m/s

Intensity
Intensity is the energy transmitted per second through unit area of the medium.

PI
Area



for string,
2 21

2
µA vI

Area




Now, ( )dm dV Area dx 

also dm = µdx   µ = ρArea  
µ = ρ

Area

 2 21
2

I A v 

Although the above formula is derived for wave on string but is applicable for other mechanical wave like
sound, as well.

Ex. A string with linear mass density m = 5.00 × 10–2 kg/m is under a tension of 80.0 N. How much power must
be supplied to the string to generate sinusoidal waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm ?

Sol. The wave speed on the string is
1/2

2

80.0 40.0 /
5.00 10 /

T Nv m s
µ kg m

 
    

Because f = 60Hz, the angular frequency  of the sinusoidal wave on the string has the value
12 2 (60.0 ) 377 f Hz s     

using these values in following equation for the power, with A = 6.00 × 10–2 m, gives

2 21
2

p µ A v

= 21 (5.00 10 / )
2

kg m (377 s–1) × (6.00 × 10–2 m)2 (40.0 m/s) = 512 W
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Ex. Two waves in the same medium are represented by
y-t curves in the figure. Find ratio of their average intensities?

t

y

wave 1

wave 2

5

2

Sol. : 2
2

2
2

2
1

2
1

2

1

A
A









 = 2
2

2
2

2
1

2
1

Af
Af



.  = 

44
251



 = 16
25

Superposition Principle
Two or more wave can propagate in the some medium without affecting the motion of one another. If several waves
propagate in a medium simultaneously, then the resultant displacement of any particle of the medium at any instant
is equal to the vector sum of the displacement produced by individual waves. The phenomenon of intermixing of
two or mores to produce a new wave is called superposition of waves. Therefore according to superposition
principle "The resultant displacement of a particle at any point of the medium, at any instant of time is the vector
sum of the displacements caused to the particle by the individual waves.

If 1 2 3, , y y y
uur uuur uur

....... are the displacement of particle at a particular time due to individual waves, then the resultant

displacement is given by 1 2 3+ + y y y y
ur uur uur uur

.......

Principle of superposition holds for all types of waves, i.e. mechanical as well as electromagnetic waves. But this
principle is not applicable to the waves of very large amplitude.

If we have two or more waves moving in the medium the resultant waveform is the sum of wave functions of
individual waves.
Fig: a sequence of pictures showing two pulses travelling                              

(c)

(a)

(b)

 in opposite directions along a stretched string. When
the two disturbances overlap they give a complicated
pattern as shown in (b). In (c), they have passed each
other and proceed unchanged.

An Illustrative examples of this principle is phenomena
of interference and reflection of waves.

Due to superposition of waves the following phenomenon can be seen.

(i) Interference : Superposition of rwo waves having equal frequency and nearly equal amplitude.
(ii) Beats : Superposition of two waves of nearly equal frequency in same direction.
(iii) Stationary waves : Superposition of equal wave from opposite direction.
(iv) Lissajous figure : Superposition of perpendicular waves.
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Superposition of waves

Interference Beats Stationary waves Lissaju’s 
figure

Longitudinal Transverse

Organ Pipe

Application

Resonance
tube

Stretched
string

Application

Sonomet

Interference of waves differing in phase
Suppose two identical sources send sinusoidal waves of same angular frequency  in positive x-direction. Also,
the wave velocity and hence, the wave number k is same for the two waves. One source may be situated at different
points. The two waves arriving at a point then differ in phase. Let the amplitudes of the two waves be A1 and A2 and
the two waves differ in phase by an angle . Their equations may be written as

y1 = A1 sin (t – kx )
and y2 = A2 sin (t – kx + ).
According to the principle of superposition, the resultant wave is represented by

y = y1 + y2 = A1 sin (t – kx) + A2 sin (t – kx + ).
on expanding and solving as we did in S.H.M., we get

y = A sin (t – kx + )
where amplitude of the resultant wave is

A =  cosAA2AA 21
2
2

2
1

Also,       tan  = 



cosAA

sinA
21

2    ( is phase difference of the resultant wave with the first wave)

Since intensity is proportional to the square of the amplitude, therefore

 1 2 1 22 cosI I I I I    

Constructive Interference :
when cos  = + 1
i.e. when  = 2n (n = 0,1,2, ............)
i.e. when position of crests and through of one wave coincide with the positions of crests and thorough respectively
of another wave then
A = A1 + A2   i.e. maximum
Also I is maximum

and  2

max 1 2I I I 

This is called constructive interference.
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Destructive interference :
When cos  = – 1
i.e. when   = (2n – 1) (n = 1,2, ....)
i.e. when positive crests of one wave matches with troughs of another wave.
A is minimum  and  Amin = |A1 – A2|

and  2

min 1 2I I I 

  (i) Maximum and minimum intensities in any interference wave form. Max

Min

I
I  = 

2

1 2

1 2

I I
I I

 
 
  

 = 
 
  

2
1 2

1 2

A A
A A

(ii) Average intensity of interference wave form %& < I >or  Iav  =
max minI I

2


= I1 + I2

if  A = A1 = A2 and I1 = I2 = I  then   Imax = 4I, Imin  = 0  and  IAV  =2I

(iii) Degree of interference Pattern (f) : Degree of hearing (Sound Wave) or

Degree of visibility (Light Wave)  f  =  max min

max min

I I
I I




 × 100

In condition of perfect interference degree of interference pattern is maximum fmax  =  1   or 100%

(iv) Condition of maximum contrast in interference wave form a1=a2    and  I1 = I2 then Imax = 4I and Imin = 0
For perfect destructive interference we have a maximum contrast in interference wave form.

Ex. If ratio of maximum to minimum resultants intensities of two intensities wave travelling in same direction is 9 : 4
then find ratio of individual intensities.

Sol. Max

Min

I
I  = 

2

1 2

1 2

9
4

I I
I I

 
   

1 2

1 2

3
2

I I
I I



 

1

2

3 2
3 2

I
I




 
1

2

25 :1I
I



Ex. Two waves each of intensity I0 are disturbing the same medium. Find resultant intensities at the points where the

phase difference f is (i) 2   (ii)   (iii) 
2


  (iv) 
2
3


Sol. (i) 0 0 0 0 02 4 I I I I I I    

(ii) 0 0 0 02 0I I I I I    

(iii) 0 0 0 0 02 0 2 I I I I I I    

(iv) 0 0 0 0 0
12
2

I I I I I I       
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Reflection and Transmission of Waves
A travelling wave, at a rigid or denser boundary, is reflected with a phase reversal but the reflection at an
open boundary (rarer medium) takes place without any phase change. The transmitted wave is never inverted,
but propagation constant k is changed.

      

Let two string 1 and 2 or linear density µ1 and µ2 respectively lie along x-axis   

Transmitted
Incident

Reflected
0- x xµ1 µ2

and be joined at x = 0 in their equilibrium position. The tension in both the
strings is identical. Let the wave velocity in the strings v1 & v2 respectively let
the incident wave travelling from left to right arrive at the boundary. This
wave is party reflected and partly transmitted. Both transmitted and reflected
wave will have the same frequency v and also the same angular frequency 
as the incident wave.
Let the equation of wave incident from the left hand side be given by,

yi = Ai sin (t – kx)
At O this equation becomes,

yi = Ai sin (t)
Let the equation of the wave reflected from the boundary be given as,

yr = Ar sin (t – kx)
At O this equation becomes

yr = Ar sin (t)
Let the equation of the wave transmitted be given as,

yt = At sin (t)
Now, since the vertical displacement of the two strings must be the same at all times at x = 0, we have,

yi + yr = yt

Ai sin (t) + Ar sin (t) =  At sin (t)
Ai + Ar = At ....... (i)

And for the continuity of the strain at the boundary at O, we have,

0 0

i tr

x x

y yy
x x x

 
   

       
   

– Ai k cos (t – kx) + Ar k cos (t + kx) = –k' A k cos (t – k'x)

So,
i tr

i r t

A AA
  


   

i tr

i r t

A AA
v v v
 

 

i tr

i r t

A AA
v v v
  

1

2
i r t

vA A A
v

  ....... (ii)
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Eliminating A from equation (i) and (ii) we have

1

2

i r

i r

A A v
A A v





 2 1

2 1

      r

i

A v v
A v v


 


....... (iii)

Now the velocities of the 2 string are,

1
1

1

Tv
µ

 and
2

2
2

Tv
µ



Putting these values in equation (iii), we get

1 2

1 2

r

i

µ µA
A µ µ




 ....... (iv)

similarly the ratio of amplitude of transmitted pulse to incident pulse is given by

1

1 2

2t

i

µA
A µ µ


 ....... (v)

Note :
1. It is clear from equation (iv) that if µ1 < µ2, Ar is negative w.r.t. Ai i.e. the pulse is inverted i.e. 180° out of phase

with incident pulse,

r iA A  when µ1 < < µ2.

Such  is the case when a rope is tied to a wall or a sound wave is reflected from the closed end of an organ
pipe. At the close end, the displacement of the air molecules in the incident and reflected wave are in the
opposite direction. Consequently a compression is reflected as a compression and a rarefaction as a rarefaction.

2. If on the other hand µ2 > µ1, then r

i

A
A

 is positive. In this case AAr the same sing Ai and there is no change of

phase at the boundary. In acoustics, this corresponds to reflection at the open end of the organ pipe. These
the compression is reflected as rarefaction and vice versa.

3. It is clear from equation (v) that the t

i

A
A

is always positive indicating that there is no phase change in the

transmitted wave w.r.t. the incident wave.
Ex. A harmonic wave is travelling on string 1. At a junction with string 2 it is partly reflected and partly transmitted.

The linear mass density of the second string is four times that of the first string, and that the boundary
between the two strings is at x = 0. If the expression for the incident wave is,  yi = Ai cos (k1 x – 1t)
What are the expressions for the transmitted and the reflected waves in terms of Ai, k1 and 1?

Sol. : Since v = /T , T2 = T1   and 2 = 41

we have, v2 = 
2
v1 ....... (i)

The frequency does not change, that is,
1 = 2 ....... (ii)

Also, because k = /v, the wave numbers of the harmonic waves in the two strings are related by,

k2 = 
2

2
v


 = 2/v1

1  = 2
1

1
v


 = 2k1 ....... (iii)



WAVE MOTION

132
Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

+91-9350679141

The amplitudes are,

At = 







 21

2
vv

v2
 AAi = 








 )2/v(v

)2/v(2
11

1  AAi = 3
2

 AAi ....... (iv)

and Ar = 










21

12
vv
vv

 AAi = 










)2/v(v

v)2/v(
11

11  AAi = 3
A i ....... (v)

Now with equation (ii), (iii) and (iv), the transmitted wave can be written as,

yt = 3
2

 AAi cos (2k1 x – 1t) Ans.

Similarly the reflected wave can be expressed as,

    = 3
A i  cos (k1x + 1t + ) Ans.

Standing Waves :
Standing wave is obtained due to superposition of two waves travelling with same speed in opposite directions
along the same line.
Suppose two sine waves of equal amplitude and frequency propagate on a long string in opposite directions. The
equations of the two waves are given by

y1 = A sin (t – kx) and y2 = A sin (t + kx + ).
These waves interfere to produce what we call standing waves. To understand these waves, let us discuss the
special case when  = 0.
The resultant displacements of the particles of the string are given by the principle of superposition as

y = y1 + y2   = A [sin (t – kx) + sin(t + kx)]  = 2A sin t cos kx
or, y = (2A cos kx) sin t.
we may write, y = A0 sin (t) [where A0 = 2A cos kx]
The result obtained from the above equation are :

1. As this equation satisfies the wave equation,

2

2

22

2

t
y

v
1

x
y










it represents a wave. However, as it is not of the form f(ax ± bt), the wave is not travelling and so is
called standing or stationary wave.

2. The amplitude of the wave
Ac = 2A cos kx

is not same for all prints of the medium but varies periodically with position (and not with time as in beats).
3. The points for which amplitude is minimum are called nodes.

For nodes cos kx = 0,  i.e., kx = 
2

5,
2

3,
2



i.e., x = 
4

5,
4

3,
4


, .... 









2kas

In a stationary wave, consecutive nodes are equally spaced and their separation is 
2


.
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4. The points for which amplitude is maximum are called antinodes
For antinodes, cos kx = ± 1,  i.e.,  kx = 0, , 2, 3, ......

i.e., x = 0, 
2


, 
2

2
, 

2
3

,.... 









2kas

i.e., like nodes, antinodes are also equally spaced with spacing (/2) and Amax = ± 2A.
Furthermore, nodes and antinodes are alternate with spacing (/4).

5. The nodes divide the medium into segments (or loops). All the particles in a segment vibrate in same phase, but in
opposite phase with the particles in the adjacent segment. Twice in one period all the particles pass through their
mean position simultaneously with maximum velocity (A), the direction of motion being reversed after each half
cycle.

6. Standing waves can be transverse or longitudinal, e.g., in strings (under tension) if reflected wave exists, the
waves are transverse-stationary, while in organ pipes waves are longitudinal-stationary.

7. As in stationary waves nodes are permanently at rest, so no energy can be transmitted across them, i.e., energy of
one region (segment) is confined in that region. However, this energy oscillates between elastic potential energy
and kinetic energy of the particles of the medium. When all the particles are at their extreme positions KE is
minimum while elastic PE is maximum (as shown in figure A), and when all the particles (simultaneously) pass
through their mean position KE will be maximum while elastic PE minimum (Figure B). The total energy confined in
a segment (elastic PE + KE), always remains the same.
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Ex. Two waves travelling in opposite directions produce a standing wave. The individual wave functions are
y1 = (4.0 cm) sin(3.0x – 2.0t)
y2 = (4.0 cm) sin (3.0x + 2.0t)

where x and y are in centimeter.
(a) Find the maximum displacement of a particle of the medium at x = 2.3 cm.
(b) Find the position of the nodes and antinodes.

Sol. (a) When the two waves are summed, the result is a standing wave whose mathematical representation is
given by Equation, with A = 4.0 cm and k = 3.0 rad/cm;

y = (2A sin kx) cos t = [(8.0 cm) sin 3.0 x] cos 2.0 t
Thus, the maximum displacement of a particle at the position x = 2.3 cm is

ymax = [(8.0 cm) sin 3.0x]x = 2.3 cm

      = (8.0 m) sin (6.9 rad) = 4.6 cm

(b) Because k = 2/ = 3.0 rad/cm, we see that  = 2/3cm. Therefore, the antinodes are located at

x = n 






 
0.6  cm (n = 1, 3, 5, .....)

and the nodes are located at

x = n
2
 







 
0.6  cm (n = 1, 2, 3, .....)

Ex. Two travelling waves of equal amplitudes and equal frequencies move in opposite direction along a string. They
interfere to produce a standing wave having the equation.

y = A cos kx sin t
in which A = 1.0 mm, k = 1.57 cm–1 and  = 78.5 s–1. (a) Find the velocity and amplitude of the component travelling
waves. (b) Find the node closest to the origin in the region x > 0. (c) Find the antinode closest to the origin in the
region x > 0. (d) Find the amplitude of the particle at x = 2.33 cm.

Sol. (a) The standing wave is formed by the superposition of the waves

y1 = 
2
A

 sin (t – kx) and y2 = 
2
A

 sin (t + kx).

The wave velocity (magnitude) of either of the waves is

v = 
k


 = 1

1

cm57.1
s5.78




 = 50 cm/s; Amplitude = 0.5 mm.

(b) For a node, cos kx = 0.
The smallest positive x satisfying this relation is given by

kx = /2    or, x = 
k2


 = 1cm57.12
14.3


 = 1 cm

(c) For an antinode, |cos kx| = 1.
The smallest positive x satisfying this relation is given by

kx =    or, x = 
k


 = 2 cm
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(d) The amplitude of vibration of the particle at x is given by | A cos kx |. For the given point,

kx = (1.57 cm–1) (2.33 cm) = 6
7
 =  + 6


.

Thus, the amplitude will be

(1.0 mm) | cos ( + /6) | = 
3
3

 mm = 0.86 mm.

STANDING WAVES IN STRINGS :
(a) Fixed at both ends :

Suppose a string of length L is kept fixed at the ends x = 0 and x = L. In such a system suppose we send a continuous
sinusoidal wave of a certain frequency, say, toward the right. When the wave reaches the right end. It gets reflected
and begins to travel back. The left-going wave then overlaps the wave, which is still travelling to the right. When the
left-going wave reaches the left end, it gets reflected again and the newly reflected wave begins to travel to the right.
Overlapping the left-going wave. This process will continue and, therefore, very soon we have many overlapping
waves, which interfere with one another. In such a system, at any point x and at any time t, there are always two
waves, one moving to the left and another to the right. We, therefore, have

y1(x, t) = ym sin (kx – t) (wave travelling in the positive direction of x-axis)

and y2(x, t) = ym sin (kx + t) (wave travelling in the negative direction of x-axis).
The principle of superposition gives, for the combined wave

y’(x, t) = y1(x, t) + y2(x, t)
= ym sin (kx – wt) + ym sin (kx + t)

= (2ym sin kx) cos t
It is seen that the points of maximum or minimum amplitude stay at one position.

Nodes :  The amplitude is zero for values of kx that give sin kx = 0 i.e. for,

kx = n, for n = 0, 1, 2, 3,.....

Substituting k = 2 in this equation, we get

x = n 
2


,  for n = 0, 1, 2, 3,.....

The positions of zero amplitude are called the nodes. Note that a distance of 
2


 or half a wavelength separates two
consecutive nodes.

Antinodes :
The amplitude has a maximum value of 2ym, which occurs for the values of kx that give |sin kx| = 1. Those values are

kx = (n + 1/2) for n = 0, 1, 2, 3,....

Substituting k = 2 in this equation, we get.

x = (n + 1/2) 
2


 for n = 0, 1, 2, 3,....

as the positions of maximum amplitude. These are called the antinodes. The antinodes are separated by /2 and are
located half way between pairs of nodes.
For a stretched string of length L, fixed at both ends, the two ends of the ends is chosen as position x = 0, then the
other end is x = L. In order that this end is a node; the length L must satisfy the condition

L = n
2


, for n = 1, 2, 3,....
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This condition shows that standing waves on a string of length L have restricted wavelength given by

 = 
n
L2

, for n = 1, 2, 3,.....

The frequencies corresponding to these wavelengths follow from Eq. as

f = n 
L2
v

, for n = 1, 2, 3,.....

where v is the speed of travelling waves on the string. The set of frequencies given by equation are called the
natural frequencies or modes of oscillation of the system. This equation tells us that the natural frequencies of a

string are integral multiples of the lowest frequency f = 
L2
v

, which corresponds to n = 1. The oscillation mode with

that lowest frequency is called the fundamental mode or the first harmonic. The second harmonic or first overtone
is the oscillation mode with n = 2. The third harmonic and second overtone corresponds to n = 3 and so on. The
frequencies associated with these modes are often labeled as 1, 2, 3 and so on. The collection of all possible
modes is called the harmonic series and n is called the harmonic number.

Some of the harmonic of a stretched string fixed at both the ends are shown in figure.

(a)

When n = 1 i.e. when only one loop is formed  = 2L and    
1

2 2
v Tf
L L µ

 

This is called fundamental frequency or (f0) first harmonic.
When  n = 2

(b)

i.e. formed,  = L

& 02
2
vf f
L

  This is called second harmonic or first overtone.
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(c)

When n = 3, 
2
3
L   and 03 3

2
vf f
L

   
 

This is called third harmonic or second overtone.
Thus nth harmonic or (n–1)th  overtone is given by

0 
2
vf n f n
L

    
 


2L
n

    
 

Fundamental frequency of a string fixed at both ends is given

0
1

2 2
v Tf
L L µ

 

Where T is tension and µ is mass per unit length
Also µ = density x Area of cross-section = A

 0
1

2
Tf

L A


Ex. Two string of same material are stretched to same tension between rigid supports. It diameter of second wire is
double than that of first wire and fundamental frequency of first is equal to third harmonic of second wire, find ratio
of their lengths.

Sol.
0 2

1 1
2

4

T Tf
L Ld 

 
 

 
  
 

(f0)1st = 3(f0)2nd 
1 1 3 2

1 3
L d L d

 
1 2

2 1

2
3 3

L d
L d

 

Ex. A wire having a linear mass density 5.0 × 10–3 kg/m is stretched between two rigid supports with a tension of 450 N.
The wire resonates at a frequency of 240 Hz. The next higher frequency at which the same wire resonates is 480 Hz.
Find the length of the wire.

Sol. Suppose the wire vibrates at 420 Hz in its nth harmonic and at 490 Hz in its (n + 1)th harmonic.

420
2
n T
L µ

 ....... (i)

and
1490

2
n T

L µ


 ....... (ii)

Subtracting equation (i) from (ii)

1 60
2

T
L M

 
1

2 60
TL
µ




 3

1 450 2.5
2 60 5 10

L m 
 
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(b) Fixed at One End :
Standing waves can be produced on a string which is fixed at one end and whose other end is free to move in a
transverse direction. Such a free end can be nearly achieved by connecting the string to a very light thread.
If the vibrations are produced by a source of “correct” frequency, standing waves are produced. If the end x = 0 is
fixed and x = L is free, the equation is again given by

y = 2A sin kx cos t
with the boundary condition that x = L is an antinode. The boundary condition that x = 0 is a node is automatically
satisfied by the above equation. For x = L to be an antinode,

sin kL = ± 1

or, kL = 






 
2
1n  or,


L2

= 






 
2
1n

or,
v
Lf2

 = n + 
2
1

or, f = 






 
2
1n  L2

v
 = L2

2
1n 

 /T  .....

These are the normal frequencies of vibration. The fundamental frequency is obtained when n = 0, i.e.,

f0 = v/4L Fundamental

A
N

(a)

The overtone frequencies are

f1 = 
L4
v3

 = 3f0 A

First 
Overtone(b)

N
AN

f2 = 
L4
v5

 = 5f0
A

Second
Overtone(c)

N NAA

We see that all the harmonic of the fundamental are not the allowed frequencies for the standing waves. Only the
odd harmonics are the overtones. Figure shows shapes of the string for some of the normal modes.

Laws of Transverse Vibration of a String
(i) Law of length : For a given string, under a given tension, the fundamental frequency of vibration is inversely

proportional to the length of the string, i.e,  1n 
l

 (T and m are constant)

(ii) Law of tension : The fundamental frequency of vibration of stretched string is directly proportional to the square
root of the tension in the string, provided that length and mass per unit length of the string are kept constant.

n T  ( l and m are constant)
(iii) Law of mass : The fundamental frequency of vibration of a stretched string is inversely proportional to the square

root of its mass per unit length provided that length of the string and tension in the string are kept constant, i.e.,
1n
m

  ( l  and T are constant)

(iv) Melde's experiment : In Melde's experiment, one end of a flexible piece of thread is tied to the end of a tuning fork.
The other end passed over a smooth pulley carries a pan which can be loaded. There are two arrangements to
vibrate the tied fork with thread.
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Transverse Arrangement  :

Case I
In a vibrating string of fixed length, the product of number of loops and square root of tension are constant or

p T  = constant.

M

T = Mg

Case II

When the tuning fork is set vibrating as shown in fig. then the prong vibrates at right angles to the thread.  As a
result the thread is set into motion.  The frequency of vibration of the thread (string) is equal to the frequency of
the tuning fork.  If length and tension are properly adjusted then, standing waves are formed in the string.  (This
happens when frequency of one of the normal modes of the string matched with the frequency of the tuning fork).

Then, if p loops are formed in the thread, then the frequency of the tuning fork is given by n = 
p
2l

 
T
m

Case III

If the tuning fork is turned through a right angle, so that the prong vibrates along the length of the thread, then the
string performs only a half oscillation for each complete vibrations of the prong.  This is because the thread only
makes node at the midpoint when the prong moves towards the pulley i.e. only once in a vibration.

Longitudinal Arrangement :
The thread performs sustained oscillations when the natural frequency of the given length of the thread under
tension is half that of the fork.

M

T = Mg

Thus if p loops are formed in the thread, then the frequency of the tuning fork is  n = 
2p
2l

 
T
m

SONOMETER :
Sonometer consists of a hollow rectangular box of light wood.  One end of the experimental wire is fastened to one
end of the box.  The wire passes over a frictionless pulley P at the other end of the box.  The wire is stretched by a
tension T.

A
B1 B2

P

The box serves the purpose of increasing the loudness of the sound produced by the vibrating wire.  If the length

the wire between the two bridges is , then the frequency of vibration is  n  =  
l

2l
 

T
m

To test the tension of a tuning fork and string, a small paper rider is placed on the string.  When a vibrating tuning
fork is placed on the box, and if the length between the bridges is properly adjusted, then when the two frequencies
are exactly equal, the string quickly picks up the vibrations of the fork and the rider is thrown off the wire.
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Comparison of progressive and stationary waves

S .No. Progress ive waves S tationary waves
These waves  travels  in a medium Thes e waves  do not travel and remain  confined
with definite velocity . between two boundaries  in the medium.

2 These waves  trans mit energy in  the medium. These waves  do not transmit energy in  the medium.
The phase of vibration  varies  The phase of all the particles  in between two nodes  
continuous ly from particle to   particle. is  always  same. But particles  of two 
No particle of medium is  A djacent nodes  differ in phase by 180°
Permanently  at res t. Particles  at nodes  are permanently  at res t.
A ll particles  of the medium vibrate The amplitude of vibration changes  from particle
and amplitude of vibration is  s ame. to  particle. The amplitude is  zero  for all at nodes

and maximum at antinodes .
A ll the particles  do not attain  the A ll the particles  attain the maximum 
maximum disp lacement pos ition displacement 
s imultaneous ly.

5

1

3

4

6

SOUND WAVE
Sound waves are the most common example of longitudinal waves.

Sound waves can be created by a vibrating source such as a guitar string, the human vocal cords, the prongs of
va tunning fork or the diaphragm of a loudspeaker.

They travel through any material medium with a speed that depends on the properties of the medium. As the waves
travel through air, the elements of air vibrate to produce changes in density and pressure along the waves travel
through air, the elements of air vibrate to produce changes in density and pressure along the direction of motion
of the wave. If the source of the sound waves vibrates sinusoidally, the pressure variations are also sinusoidal.
The mathematical description of sinusoidally, the pressure variations are also simusoidal sound waves is very
similar to that of simusoidal string waves.

1. Propagation of Sound Waves :

Sound is a mechanical three dimensional and longitudinal wave that is created by a vibrating source such as a guitar
string, the human vocal cords, the prongs of a tuning fork or the diaphragm of a loudspeaker. Being a mechanical
wave, sound needs a medium having properties of inertia and elasticity for its propagation. Sound waves propagate
in any medium through a series of periodic compressions and rarefactions of pressure, which is produced by the
vibrating source.

Consider a tuning fork producing sound waves.

A B normal 
atmospheric 
pressure     

compression 
pulse

v

When Prong B moves outward towards right it compresses the air in front of it, causing the pressure to rise slightly.
The region of increased pressure is called a compression pulse and it travels away from the prong with the speed of
sound.
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After producing the compression pulse, the prong B reverses its motion and moves inward. This drags away some
air from the region in front of it, causing the pressure to dip slightly below the normal pressure. This region of
decreased pressure is called a rarefaction pulse. Following immediately behind the compression pulse, the rarefac-
tion pulse also travels away from the prong with the speed of sound.

`

A B

compression pulse

v

}

rarefaction
pulse

.   .   .

.   .   .

.   .   .

If the prongs vibrate in SHM, the pressure variations in the layer close to the prong also varies simple harmonically
and hence increase in pressure above normal value can be written as

P = P0 sin t
where P0 is the maximum increase in pressure above normal value.
As this disturbance travel towards right with wave velocity v, the excess pressure at any position x at time t will be
given by

P = P0 sin (t – x/v) .............(1)
Using p = P, p0 = P0 , the above equation of sound wave can b written as :

p = p0 sin (t – x/v) .............(2)

Equation of Sound Waves
As the piston oscillates sinusoidally, regions of compression and rarefaction are continuously set up.  The distance
between the centres of two successive compressions (or two successive rare factions) equals the wavelength . As
these regions travel through the tube, any small element of the medium moves with simple harmonic motion parallel
to the direction of the wave. If y(x,t) is the position of a small element relative to its equilibrium position, we can
express this harmonic position function as

y (x, t) = A cos (t – kx)
Where A is the maximum position of the element relative to equilibrium called the displacement amplitude of the
wave. The parameter k is the wave number and  is the angular frequency of the piston.
Note that the displacement of the elements is along y, in the direction of propagation of the sound wave, which
means we are describing a longitudinal wave.
Consider a thin disk-shaped element of gas whose circular cross section is parallel to the piston in figure. This
element will undergo changes in position, pressure, and density as a sound wave propagates through the gas. From
the definition of bulk modulus, the pressure variation in the gas is

PVB
V






or
i

VP B
V


  

The element has a thickness x in the horizontal direction and a cross-sectional area A, so its volume is Vi = Ax. The
change in volume V accompanying the pressure change is equal to Ay, where y is the difference between the
value of y at x + x and the value of y at x respectively. Hence, we can express P as

or
1

[ ' ]
( )

V B y y A y yP B B
V A x A x x
   

      
  
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As x approaches zero, the ratio y/x becomes /y x   (The partial derivative indicates that we are interested in
the variation of x with position at a fixed time.) Therefore,

or yP B
x


  


If y = A sin (t – kx) ........ (i)
=BAK cos (t – kx) ........ (ii)
equation (i) and (ii) represents that same sound wave where, p is excess pressure (at position x), i.e. pressure over
and above the average atmospheric pressure and the pressure amplitude p0 is given by

0
BAp BAK

v


  ......... (iii)

(B = Bulk modulus of the medium, K = angular wave number)
Note from equation (i) and (ii) we can above that the displacement of a particle and excess pressure at any position

are out of phase by 
2


. Hence a displacement maxima corresponds to a pressure minima and vice-versa.

Ex. The equation of a sound wave in air is given by
p = 0.2 sin [3000 t – 9x], where all variables are in S.I. units.

(a) Find the frequency, wavelength and the speed of sound wave in air.
(b) If the equilibrium pressure of air is 1.0 × 105 N/m2, what are the maximum and minimum pressures at a point as the
wave passes through that point ?

Sol. (a) Comparing with the standard form of a travelling wave
p = p0 sin [(t – x/v)]

we see that  3000 s–1. The frequency is

3000
2 2

f Hz
 

 

Also from the same comparison, /v = 9.0 m-1

or, 1
1 1

3000 1000        /
39.0 9.0

v m s
m m
 

  

The wavelength is 
 

 
1000 / 3 2=

3000 / 2 9
v
f




   m

(b) The pressure amplitude is p0 = 0.02 N/m2. Hence, the maxima and minima pressures at a point in the wave motion
will be (1.01×105 ± 0.02) N/m2.

Ex. A sound wave of wavelength 40cm travels in air. If the difference between the maximum and minimum
Pmax – Pmin = (P + p0) – (P – p0) = 2p0. The bulk modulus of air is 1.4 × 105 N/m2.

Sol. The pressure amplitude is

3 2
3 2

0
4.0 10 / 2 10 /

2
N mp N m




  

The displacement amplitude A is given by
p0 = BAK

or 0 0

2
p p

A
BK B




    
3 2

0

4

2 10 (40 10 ) 200 A
72 14 10 

   
 

  
  

0
A = 13.2 A
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2. Frequency and Pitch of Sound Waves
Frequency :

Each cycle of a sound wave includes one compression and one rarefaction, and frequency is the number of cycles
per second that passes by a given location. This is normally equal to the frequency of vibration of the (tuning fork)
source producing sound. If the source, vibrates in SHM of a single frequency, sound produced has a single
frequency and it is called a pure tone..

However a sound source may not always vibrate in SHM (this is the case with most of the common sound sources
e.g. guitar string, human vocal card, surface of drum etc.) and hence the pulse generated by it may not have the
shape of a sine wave. But even such a pulse may be considered to be obtained by superposition of a large number
of sine waves of different frequency and amplitudes. We say that the pulse contain all these frequencies.

Audible Frequency Range for Human :
A normal person hears all frequencies between 20 & 20 KHz. This is a subjective range (obtained experimentally)
which may vary slightly from person to person. The ability to hear the high frequencies decreases with age and a
middle-age person can hear only upto 12 to 14 KHz.

Infrasonic Sound :
Sound can be generated with frequency below 20 Hz called infrasonic sound.

Ultrasonic Sound :
Sound can be generated with frequency above 20 kHz called ultrasonic sound.
Even through humans cannot hear these frequencies, other animals may. For instance Rhinos communicate through
infrasonic frequencies as low as 5Hz, and bats use ultrasonic frequencies as high as 100 KHz for navigating.

Pitch :
Frequency as we have discussed till now is an objective property measured its units is Hz and which can be
assigned a unique value. However a person’s perception of frequency is subjective. The brain interprets frequency
primarily in terms of a subjective quality called Pitch.  A pure note of high frequency is interpreted as high-pitched
sound and a pure note of low frequency as low-pitched sound

Ex. A wave of wavelength 4 mm is produced in air and it travels at a speed of 300 m/s. Will it be audible ?

Sol. From the relation v = , the frequency of the wave is

 = 

v

 = m104
s/m300

3
 = 75000 Hz.

This is much above the audible range. It is an ultrasonic wave and will not be audible to humans, but it will be audible
to bats.

Speed of Sound Waves
We now derive equation by direct application of Newton's laws. Let a single pulse in which air is compressed travel
(from right to left) with speed v through the air in a long tube, like that in figure. Let us run along with the pulse at
that speed, so that the pulse appears to stand still in our reference frame. Figure shows the situation as it is viewed
from that frame. The pulse is standing still, and air is moving at speed v through it from left to right.
Let the pressure of the undisturbed air be P and the pressure inside the pulse be P + P, where P is positive due to
the compression. Consider an element of air thickness x and face area A, moving toward the pulse at speed v. The
time interval that is taken by the pulse to cross the element.

xt
v


 
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The force acting on the leading and trailing faces (due to air pressure) as shown.

F = PA – (P + P) A
   = –  P A (net force)

The minus sign indicates that the net force on the air element is directed to the left in figure.
The volume of the element is A(x) so with the aid of equation, we can write its mass as

m = v = A x = Av (t)
The average acceleration of the element during t is

va
t





Thus, from Newton's second law (F = ma), we have,

(  t) vPA Av
t

 
  



which we can write as

2

/
Pv

v v
 




The air that occupies a volume V (=Avt) outside the pulse is compressed by an amount
V(=Avt) as it enters the pulse. Thus,

V A v t v
V Av t v
   

 


Substituting equation and then equation into equation leads to

2

/ /
P Pv B

v v V V
  

  
 


Bv =
ρ

Speed of longitudinal (Sound) waves

Newton Formula vmedium=
E
 (Use for every medium)

Where E = Elasticity coefficient of medium &  = Density of medium

(i) For solid medium    vsolid = 
Y
 Where  E = Y = Young's modulas

(ii) For liquid Medium  vliquid = 
B
 Where  E = B, where B = volume elasticity coefficient of liquid
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(iii) For gas medium
The formula for velocity of sound in air was first obtained by Newton. He assumed that sound propagates through

air and temperature remains constant. (i.e. the process is isothermal) so Isothermal Elasticity = P   vair = (P / 

At   NTP for air   P = 1.01 x 105 N/m2 and  = 1.3 kg/m3      so    vair = 
51.01 10

1.3


= 279 m/s

However, the experimental value of sound in air is 332 m/s which is much higher than given by Newton's formula.

(iv) Laplace Correction
In order to remove the discrepancy between theoretical and experimental values of velocity of sound, Laplace
modified Newton's formula assuming that propagation of sound in air is adiabatic process, i.e.

Adiabatic Elasticity = p so that  
Pv 


 i.e. v = 1.41  x 279 = 331.3 m/s [as air = 1.41]

Which is in good agreement with the experimental value (332 m/s). This in turn establishes that sound propagates
adiabatically through gases.
The velocity of sound in air at NTP is 332 m/s which is much lesser than that of light and radio–waves
(= 3 x 108 m/s). This implies that –
(a) If we set our watch by the sound of a distant siren it will be slow.
(b) If we record the time in a race by hearing sound from starting point it will be lesser than actual.
(c) In a cloud–lightening, though light and sound are produced simultaneously but as c > v, light proceeds

thunder. An in case of gases –

vs = 
P
 = 

PV
mass


 
mass Mas

volume V
     

 or vs =
RT

M
 

[as PV =  = RT] or vs = 
w

RT
M


w
w w

mass Mas where M  = Molecular weight
M M

 
   

 

And from kinetic-theory of gases   vrms = w(3RT / M ) So 
v

v
s

rms
 = 


3

Effect of Various Quantities
(1) Effect of temperature

For a gas  & MW is constant v  T  
v
v

2

1
 = 

T
T

2

1
 = 

t  273
273  vt = v0 

1
2t1

273
   

By applying Binomial theorem.

(i) For any gas medium vt = v0 
t1

546
   

(ii) For air : vt = v0 + 0.61 t m/sec. (v0 = 332 m/sec. )

(2) Effect of Relative Humidity
With increase in humidity, density decreases so in the light of  v =  P / )  We conclude that with rise in
humidity velocity of sound increases. This is why sound travels faster in humid air (rainy season) than in dry air
(summer) at same temperature. Due to this in rainy season the sound of factories siren and whistle of train can be
heard more than summer.
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(3) Effect of Pressure

As velocity of sound  v = 
E
  = 

P
  = 

 RT
M

So pressure has no effect on velocity of sound in a gas as long as temperature remain constant. This is why in
going up in the atmosphere, though both pressure and density decreases, velocity of sound remains constant as
long as temperature remains constant. Further more it has also been established that all other factors such as
amplitude, frequency, phase, loudness pitch, quality etc. has partially no effect on velocity of sound.

Velocity of sound in air is measured by resonance tube or Hebb's method while in gases by Quinke's tube. Kundt's
tube is used to determine velocity of sound in any medium solid, liquid or gas.

(4) Effect of Motion of Air
If air is blowing then the speed of sound changes. If the actual speed of sound is v and the speed of air is w, then the
speed of sound in the direction in which air is blowing will be (v+ w), and in the opposite direction it will be (v – w).

(5) Effect of Frequency
There is no effect of frequency on the speed of sound. Sound waves of different frequencies travel with the same
speed in air although their wavelength in air are different. If the speed of sound were dependent on the frequency,
then we could not have enjoyed orchestra.

Ex. A piezo electric quartz plate of thickness 0.005 m is vibrating in resonant conditions. Calculate its fundamental
frequency if for quartz Y = 8 1010 N/m2 and  = 2.65 x 103 kg/m3

Sol. We known that for longitudinal waves in solids  v = 
Y
 , So  v = 

8 10
2 65 10

10

3


.
 = 5.5  103 m/s

Further more for fundamental mode of plate – (/2) = L So  = 2 x 5 x 10–3 = 10–2 m

But as   v = f,  i.e., f = (v/)     so  f = [5.5 x 103/10–2] = 5.5 x 105 Hz = 550 kHz

Ex. Determine the change in volume of 6 liters of alcohol if the pressure is decreased from 200 cm of Hg to 75 cm.
[velocity of sound in alcohol is 1280 m/s, density of alcohol = 0.81 gm/cc, density of Hg = 13.6 gm/cc and
g = 9.81 m/s2]

Sol. For propagation of sound in liquid  v =  B /  i.e., B = v2

But by definition B =  – V 
P
V




So   –V
P
V




 = v2,   i.e. V = 2
V( P)

v



Here P = H2g – H1g = (75 – 200)  13.6  981 = –1.667  106 dynes/cm2

So  V = 
   

 
3 6

25

6 10 1.667 10

0.81 1.280 10

 

 
 = 0.75 cc

Ex. (a) Speed of sound in air is 332 m/s at NTP. What will the speed of sound in hydrogen at NTP if the density
of hydrogen at NTP is (1/16) that of air.

(b) Calculate the ratio of the speed of sound in neon to that in water vapour at any temperature. [Molecular
weight of neon = 2.02 10–2 kg/mol  and for water vapours = 1.8  10–2 kg/mol]
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Sol. The velocity of sound in air is given by v = 
E
  = 



P

 = 
 RT

M

(a) In terms of density and pressure
v
v

H

air
 = 

P
P

H

H

air

air


  = 



air

H
     [as Pair = PH]

 vH = vair  



air

H
 = 332  

16
1

 = 1328 m/s

(b) In terms of temperature and molecular weight
v
v

Ne

W
 = 




Ne

Ne

W

WM
M

  [as TN = TW]

Now as neon is mono atomic ( = 5/3) while water vapours poly atomic ( = 4/3) so

v
v

Ne

W
 = 

5 3 1 8 10
4 3 2 02 10

2

2

/ .
/ .

b g
b g

 

 



  = 
5
4

1 8
2 02


.
.  = 1.055

Intensity of Sound Wave
Consider a harmonic sound wave propagating along a tube of cross-sectional area S, as shown in figure. The
quantity p is the excess pressure caused by the wave, and y/t is the velocity of an element of the fluid. The
instantaneous power (P) supplied by the wave to the element is

yP Fv pA
t




 

Using equation
P = [–p0 cos (kx – t)] S[– A cos(kx – t)]

or P = p0 A  S cos2 (kx –t)
At any position say x = 0, the average of cos2 t over one period is ; hence the average power transmitted by the
wave is

21 ( )
2avP S A v 

Note that this has the same from as equation for the power transported by a wave on a string.
The intensity I of a wave is defined as the energy incident per second per unit area normal to the direction of
propagation :

Power PI = =
Area S

The SI unit of intensity is W/m2

from equation we know p0 = BAK

Since K
v


  and B = v2, therefore p0 = vA

Thus
2
0

24av
p

I
r



That is, I  I/r2 , the intensity decreases as the inverse square of the distance from a point source. For cylindrical

waves 1I 
r


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Ex. Measurement of sound waves show that the maximum pressure variations in the loudest sound that the ear can
tolerate without pain are of the order of 30 Pa. Find the corresponding maximum displacement, if the frequency is
1000 Hz and v = 350 m/s.

Sol. 12(3.14)(1000) 18
350

k m
v
   

B = p = (1.)(105)

5
5

30 1.18 10 0.0118
(1.4 10 )(18)

PA mm
Bk

    


Ex. In the previous example, if the density of air r = 1.22 kg/m2, then find the intensity of a sound wave of the largest
amplitude tolerable to the human ear.

Sol. Using 
2 2

2(30) 1.05 /
2 2(1.22)(350)

mp
I W m

v
  

Appearance of Sound to Human Ear
A normal person hears all frequencies between 20 & 20 KHz. This is a subjective range )obtained experimentally)
which may very slightly from person to person. The ability to near the high frequencies decreases with age and a
middle-age person can hear only upto 12 to 14 K Hz.

Sound can be generated with frequency below 20 Hz called infrasonic sound and above 20 Hz called ultrasonic
sound. Even through humans cannot hear these frequencies, other animals may. For instance Rhinos communicate
through infrasonic frequencies as low as 5 Hz, and base use ultrasonic frequencies as high as 100 KHz for navigat-
ing.

The appearance of sound to a human ear is characterised by three parameters (a) pitch (b) loudness and (c) quality.

Pitch and Frequency
Pitch of a sound is that sensation by which we differentiate a buffalo voice with cat's voice. A male voice is of low
pitch, and a female voice has (generally) higher pitch. This sensation primarily depends on the dominant frequency
present in the sound (Higher the frequency, higher will be the pitch) and vice versa. The dominant frequency of a
buffalo voice is smaller than that of a cat's voice.

Loudness and Intensity
Intensity Level : The decibel scale

The sound intensities that the human ear can hear range from 10–12 W/m2. The intensity of a sound is perceived by
the ear as the subjective sensation of loudness. However, if the intensity doubles, the loudness does not increase
by a factor of 2. Experiments first carried out by A.G. Bell showed that to produce an apparent doubling in loudness,
the intensity of sound must be increased by a factor of about 10. Therefore, it is convenient to specify the intensity
level  in terms of the decibel (dB) which is defined as

0

10 log I
I

  ....... (i)

Where I is the measured intensity and I0 is some reference value. If one takes I0 to be 10–12 W/m2, then the threshold
of hearing corresponds to  = 10 I = 0 dB. At the threshold of pain, 1 W/m2 the intensity level is

1210log 120
10

Ib dB

   
 
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A list of the intensity level of various sources is given in Table

Intensity levels (dB)
Threshold of hearing     0

Leaves rustling 10

Quiet hall 25

Office 60

Conversation 60

Heavy traffic (3 m) 80

Loud classical music 95

Loud rock music 120

Jet engine (20 m) 130

Quality and Waveform
A sound generated by a source may contain a number of frequency components in it. Different frequency components have
different amplitudes and superposition of them results in the actual waveform. The appearance of sound depends on this
waveform apart from the dominant frequency and intensity. Figure shows waveforms for a tuning fork, a clarinet and a cornet
playing the same note (fundamental frequency = 440 Hz) with equal loudness.

    

A

t
     

A

t    

A

t

We differentiate between the sound from a table and that from a mridang by saying that they have different quality.
A musical sound has certain well-defined frequencies which have considerable amplitude. These frequencies are
generally harmonics of a fundamental frequency. Such a sound is particularly pleasant to the ear. On the other hand,
a noise has frequencies that do not bear well-defined relationship among themselves.

Ex. The sound emitted by a source reaches a particular position with an intensity I1. What is the change in intensity
level when another identical source is placed next to the first (there is no fixed phase relation between the sources.)

Sol. If the initial and final intensities are I1 and I2, then the two intensity levels are

1
1

0

10 log I
I

  ;
2

2
0

10 log Ib
I



The change in level is is

2
2 1

1

10 log I
I

  

= 10 log 2 = 3 dB

Thus when the intensity doubles the intensity level changes by 3 dB. The response of the ear roughly corresponds
to this logarithmic scale. The smallest change in level that can be
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Ex. A  speaker emits 0.8W of acoustic power. Assume that it behaves as a point source which emits uniformly in all
direction. At distance will that intensity level be 85 dB ?

Sol. From equation we know that the intensity of waves from a point source decreases as the inverse square of the
distance r ; that is

24
PI
r

 ........ (i)

We must find the intensity corresponding to an 85 - dB sound level :

0

85 10 log I
I



Thus, log (I/I0) = 8.5

or I = 10-12 × 108.5 = 3.16 × 10-4 W/m2 ....... (ii)
Using (ii) and (i) we find

2

4
Pr

I


2
4 2

(0.8 ) 201 
4(3.14)(3.16 10 / )

W m
W m 



Thus, r = 14.1 m

where I is the intensity of the sound and I0 is a constant reference intensity 10-12 W/m2. The reference intensity
represents roughly the minimum intensity that is just audible at intermediate frequencies. For I = I0, the sound level
=0. Table shows the approximate sound levels of some of the sounds commonly encountered.

Coherent Sources
If p1 = p01 sin (1t – k1x1 + 1)

O
S1 x1

S2

x2
and p2 = p02 sin (2t - k2x2 + 2)

Where p1 and p2 are pressure at point O due to S1 and S2 respectively.

The phase difference of the or arriving wave is

2 1 1 1 2 2 2 1 2 1( ) ( ) ( )k x k x t              

The sources are called coherent if the phase difference between them does not change with time  is independent
of time if

(a) 2 – 1 = 0  2 =  1

Thus for sources to be coherent, their frequencies must be equal.

(b) k1 = k2

So 1 2 2 1( ) ( ) ( )k x x k x           

Where x is called path difference of the waves.

If source are coherent the resultant intensity at any point is constant.

Source are called incoherent, if their frequencies are not equal. For incoherent sources, phase difference of the
waves continuously changes with time and interference effects can not be observed at a point.
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Interference of Sound Waves
If p1 = p01 sin (t – k1x1 + 1)

O
S1 x1

S2

x2
and p2 = p02 sin (t - k2x2 + 2)

Phase difference

a = k (x) + ()

If initial phases for the two waves are same i.e. the sources vibrate in same source

i.e  = 0

then phase difference is due to the path difference only i.e. 
2( ) ( )k x x


   

Resultant amplitude is

1 2 1 2

2 2
0 0 0 0 02( )( ) cosp p p p p  

Resultant intensity 1 2 1 22 cosI I I I I   

Condition for Constructive Interference

cos  = +1

i.e.  = 0, 2, 4, ........... i.e. 2n

i.e. 
2 ( ) 2x n 


    x = n (n = 0,1,2,3,..........) [nI]

1 20 0 0p p p     2

1 2I I I 

Condition for destructive Interference

1 20 0 0| |p p p     2

1 2I I I 

When cos  = – 1

i.e.  = , 3, 5, .......   = (2n – 1) 

and
1(2 1) ( )

2 2
x n n      (where n = 1,2,3, .............) [nI]

If I1 = I2 = I0,  then

 2
0 0 02 cosI I I I     02 (1 cos )I  

2
0! 4 cos

2
I    

 
 max 0I = 4I  [when  = 2n]

and minI = 0 [when  = (2n–1)]
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Reflection of Sound Waves
Reflection of sound waves from a rigid boundary (e.g. closed end of an organ pipe) is analogous to reflection of a
string wave from rigid boundary, reflection accompained by an inversion i.e. and abrupt phase change of . This is
consistent with the requirement of displacement amplitude to remain zero at the rigid end, since a medium particle at
the rigid end, since a medium particle at the rigid end can not vibrate. As the excess pressure and displacement
corresponding to the same sound wave vary by /2 in term of phase, a displacement minima at the rigid end will be
a point of pressure maxima. This implies that the reflected pressure wave from the rigid boundary will have same
phase as the incident wave, i.e., a compression pulse is reflected as a compression pulse and a rarefaction pulse is
reflected as a rarefaction pulse.

On the other hand, reflection of sound wave from a low pressure region (like open end of an organ pipe) is analogies
to reflection of string wave from a free end. This point corresponds to a displacement maxima, so that the incident
& reflected displacement wave at this point must be in phase. This would imply that this point would be a minima for
pressure wave (i.e. pressure at this point remains at its average value), and hence the reflected pressure wave would
be out of phase by  with respect to the incident wave i.e. a compression pulse is reflected as a rarefaction pulse and
vice-versa.

Ex. Figure shows a tube having sound source at one end and observer at other end. Source produces frequencies upto
10000 Hz. Speed of sound is 400 m/s. Find the frequencies at which person hears maximum intensity.

10 cm

10 cm

Sol. : The sound wave bifurcates at the junction of the straight and the rectangular parts. The wave through the straight
part travels a distance p1 = 10 cm and the wave through the rectangular part travels a distance
p2 =  3 ×10 cm = 30 cm before they meet again and travel to the receiver. The path difference between the two waves
received is, therefore.

p = p2 – p1 = 30 cm – 10 cm = 20 cm

The wavelength of either wave is 

v

= 


s/m400
. For  constructive interference, p= n, where n is an integer..

or, p = n.

v

  = p
v.n



  = 1.0
400

 = 4000 n

Thus, the frequencies within the specified range which cause maximum of intensity are

4000 × 1 Hz, 4000 × 2 Hz

Ex. A source emitting sound of frequency 165 Hz is placed in front of a wall at a distance of 2 m from it. A detector is also
placed in front of the wall at the same distance from it. Find the distance between the source and the detector for which
the detector detects phase difference of 2 between the direct and reflected wave. Speed of sound in air = 330 m/s.
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Sol. : The situation is shown in figure. Suppose the detector is placed at a distance
of x meter from the source. The direct wave received from the source travels a
distance of x meter. The wave reaching the detector after reflection from the
wall has travelled a distance of
2[(2)2 + x2/4]1/2 meter. The path difference between the two waves is                     

///
///

///
///

///
///

///
///

///
///

///
///

/

x

S

D
 = 

1/22
22 (2) -

4
x x

     
   

 meter..

 =  for  = 2 ..........(i)

The wavelength is  = 
v


= -1

330 /
165

m s
s  = 2 m.

Thus, by (i) 2 
1/22

2(2)
4
x 

 
 

 – x = 2

or,
1/ 22

4
4
x 

 
 

 = 1 + 
2
x

or, 4 + 
2

4
x

 = 1 + 
2

4
x

 + x

or, x = 3
Thus, the detector should be placed at a distance of 3 m from the source. Note that there is no abrupt phase change.

Vibration of Air Columns
Standing Sound Wave

Standing waves can be set up in air-columns trapped inside cylindrical tubes if frequency of the tuning fork
sounding  the air column matches one of the natural frequency of air columns. In such a case the sound of the
tuning fork becomes markedly louder, and we say there is resonance between the tuning fork and air column. To
determine the natural frequency of the air column, notice that there is a displacement node (pressure antinode) at
each closed end of the tube as air molecules there are not free to move, and a displacement antinode (pressure-
node) at each open end of the air-column.
In reality antinodes do not occurs exactly at the open end but a little distance outside. However if diameter of tube
is small compared to its length, this end correction can be neglected.

(i) Closed Organ Pipe
(In the diagram, AP = Pressure antinode, AS = displacement antinode, NP = pressure node, NS = displacement node)

NP
AP

p

AS
NS

s

Fundamental Mode :
The smallest frequency (largest wavelength) that satisfies the boundary condition for resonance (i.e. displacement
node at left end and antinode at right end is 0 = 4l, where l = length of closed pipe the corresponding frequency.

0 4
v vv

L
   is called the fundamental frequency..
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p

Ap Np Ap Np

s

Ns As Ns As

First Overnote :
Here there is one node and one antinode apart from the nodes and antinodes at the ends.

0
1

4
3 3
l 

  

and corresponding frequency,

1 0
1

3vv v


 

This frequency is 3 times the fundamental frequency and hence is called the 3rd harmonic.

nth Overnote :
In general, the nth overnote will have n nodes and n antinodes between the two nodes at the ends. The corresponding
wavelength is

4
2 1 2 1n

l
n n

  
 

and vn = (2n + 1) v0

This corresponds to the (2n + 1)th harmonic. Clearly only odd harmonic are allowed in a closed pipe.

(ii) Open Organ Pipe

S

As Ns Ns

P
Ap

NpNp

Fundamental mode :
The smallest frequency (largest wave length) that satisfies the boundary condition for resonance (i.e. displacement
antinodes at both ends) is,

0 2  l
corresponding frequency, is called the fundamental frequency

0 2
vv 
l

s
Ns NsAs As As p

Np Ap Np Ap Np

1st Overnote :
Here there is one displacement antinode between the two antinodes at the ends.

1
2
2 2

    
ll   0

2 2


    
l

and corresponding frequency

1 0
1

2vv v


 

The frequency is 2 times the fundamental frequency and is called the 2nd harmonic.
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nth Overnote :
The nth overnote has n displacement antinodes between the two antinode at the ends.

02
1 1n n n


  

 
l

and vn = (n + 1) v0
This correspond to (n+1)th harmonic, clearly both even and odd harmonics are allowed in an open pipe.

End Correction
As mentioned earlier the displacement antinode at an open end of an organ pipe lies slightly outside the open end.
The distance of the antinode from the open end is called end correction and its value is given by

e = 0.6 r

where r = radius of the organ pipe.
with end correction, the fundamental frequency of a closed pipe (fc) and an open argon pipe (f0) will be given by

4( 0.6 )c
vf

r


l    and 0 2( 1.2 )
vf

r


l

(i) A rod clamped at one end or a string fixed at one end is similar to vibration of closed end organ pipe.
(ii) A rod clamped in the middle is similar to the vibration of open end organ pipe.
(iii) If an open pipe is half submerged in water, it becomes a closed organ pipe of length half that of open pipe i.e.

frequency remains same.
(iv) Due to finite motion of air molecular in organ pipes reflection takes place not exactly at open end but some what

above it so in an organ pipe antinode is not formed exactly at free–end but above it at a distance e = 0.6r (called
end correction or Rayleigh's correction) with r being the radius of pipe. So for closed organ pipe L  L + 0.6r
while for open  L L + 2  0.6r (as both ends are open)

so that – fC = 
v

4(L 0.6r)  while f0= 
v

2(L 1.2r)

This is why for a given v and L narrower the pipe higher will the frequency or pitch and shriller will be the
sound.

(v) For an organ pipe (closed or open) if v = constant. f  (1/L)
So with decrease in length of vibrating air column, i.e., wavelength ( L), frequency or pitch will increase and
vice–versa.
This is why the pitch increases gradually as an empty vessel fills slowly.

(vi) For an organ pipe if f = constant.   v   or   v  L , f = 
v


 = constant i.e. the frequency of an organ pipe will remain

unchanged if the ratio of speed of sound in to its wave length remains constant.
(v) As for a given length of organ pipe = constant. f  v  So

(a) With rise in temperature as velocity will increase (v  T  the pitch will increase.
(Change in length with temperature is not considered unless stated)

(b) With change in gas in the pipe as v will change and so f will change (v  / M )
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Ex. For a certain organ pipe, three successive resonant frequencies are observed at 425, 595 and 765 Hz respectively.
Taking the speed for sound in air to be 340 m/s (a) Explain whether the pipe is closed at one end or open at both
ends (b) determine the fundamental frequency and length of the pipe.

Sol. (a) The given frequencies are in the ratio

425 : 595 : 765, i.e., 5 : 7 : 9
And as clearly these are odd integers so the given pipe is closed pipe.

(b) From part (b) it is clear that the frequency of 5th harmonic (which is third overtone) is 425 Hz

So 425 = 5fc    fC = 85 Hz Further as  fC = 
v

4L
, L = 

C

v
4 f  = 

340
4 85

 = 1 m

Ex. AB is a cylinder of length 1 m fitted with a thin flexible diaphragm C at middle and two other thin flexible diaphragm
A and B at the ends. The portions AC and BC contain hydrogen and oxygen gases respectively. The diaphragms
A and B are set into vibrations of the same frequency. What is the minimum frequency of these vibrations for which
diaphragm C is a node ? Under the condition of the experiment the velocity of sound in hydrogen is 1100 m/s and
oxygen 300 m/s.

Sol. As diaphragm C is a node, A and B will be antinode (as in a organ pipe either both ends are antinode or one end
node and the other antinode), i.e., each part will behave as closed end organ pipe so that

fH = 
H

H

v
4L  = 

1100
4 0.5

 = 550 Hz And f0=
0

0

v
4L =

300
4 0.5

=150Hz
H2 O2

A BC

As the two fundamental frequencies are different, the system will vibrate with a

common frequency f such that  f = nHfH = n0f0  i.e. 
H

0

n
n  = 

0

H

f
f  = 

150
550  = 

3
11

i.e., the third harmonic of hydrogen and 11th harmonic of oxygen or 6th harmonic of hydrogen and 22nd
harmonic of oxygen will have same frequency. So the minimum common frequency

f = 3  550  or 11  150 = 1650 Hz

Apparatus for determining speed of sound
1. Quinck's Tube :

It consists of two U shaped metal tubes. Sound waves with the help of tuning    
T1 T2

A

B

D

Cfork are produced at A which travel through B & C and comes out at D where
a sensitive flame is present. Now the two waves coming through different
path interfere and flame flares up. But if they are not in phase, destructive
interference occurs and flame remains undisturbed.
Suppose destructive interference occurs at D for some position of C. If now the tube C is moved so that interference
condition is disturbed and again by moving a distance x, destructive interference occurs so that
2x = . Similarly if the distance moved between successive constructive and destructive interference is x then

2 x
2


  Now by having value of x, speed of sound is given by v = n

2. Kundt's tube : It is the used to determine speed of sound in different gases. It consists of a glass tube in which
a small quantity of lycopodium powder is spread. The tube is rotated so that powder starts slipping. Now rod CD
is rubbed at end D so that stationary waves form. The disc C vibrates so that air column also vibrates with the
frequency of the rod. The piston P is adjusted so that frequency of air column become same as that of rod. So
resonance occurs and column is thrown into stationary waves. The powder sets into oscillations at antinodes
while heaps of powder are formed at nodes.
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P2 P1

rod R

clamped at 
the middle

lycopodium power

Let n is the frequency of vibration of the rod then, this is also the frequency of sound wave in the air column in the tube.

For rod : rod
rod2


 l For air :  air

air2


 l

Where air is the distance between two heaps of powder in the tube (i.e. distance between two nodes). If vair and vrod

are velocity of sound waves in the air and rod respectively, then  n = air rod

air rod

v v


 

Therefore, air air air

rod rod rod

v
v


 


l
l

Thus knowledge of vrod determines vair.

3. Resonance Tube
Construction : The resonance tube is a tube T (figure) made of brass or glass, about 1 meter long and 5 cm in
diameter and fixed on a vertical stand. Its lower end is connected to a water reservoir B by means of a flexible rubber
tube. The rubber tube carries a pinch-cock P. The level of water in T can be raised or lowered by water adjusting the
height of the reservoir B and controlling the flow of water from B to T or from T to B by means of the pinch-cock
P. Thus the length of the air–column in T can be changed. The position of the water level in T can be read by means
of a side tube C and a scale S.

Determination of the speed of sound in air by resonance tube
First of all the water reservoir B is raised until the water level in the tube T rises almost to the top of the tube. Then the
pinch–cock P is tightened and the reservoir B is lowered. The water level in T stays at the top. Now a tuning fork is
sounded and held over the mouth of tube .The pinch–cock P is opened slowly so that the water level in T falls and the
length of the air–column increases. At a particular length of air–column in T, a loud sound is heard. This is the first
state of resonance. In this position the following phenomenon takes place inside the tube.

(i) For first resonance 1 = /4

(ii) For second resonance 2 = 3/4 2 – 1 = /2    = 2(2 – 1)

If the frequency of the fork be n and the temperature of the air-column be toC, then the speed of sound at toC is
given by vt = n = 2n (2 – 1)

The speed of sound wave at 0oC v0 = (vt – 0.61 t) m/s.
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End Correction  :
In the resonance tube, the antinode is not formed exactly at the open but slightly outside at a distance x. Hence the
length of the air -column in the first and second states of resonance are (l1 + x) and (2 + x) then

    
(i) For first resonance 1 + x = /4 ..........(i)
(ii) For second resonance 2 + x = 3/4 .........(ii)
Subtract Equation (ii) from Equation (i)

2 – 1 = /2
 = 2 (2–1)

Put the value of  in Equation (i) 1 + x = 2 12( )
4
l l

 1 + x = 2 1

2
l l

   2 13
2



l lx

BEATS
When two sound waves of same amplitude travelling in     

y  & y1 2

y2

y1

y

same direction with slightly different frequency
superimpose, then intensity varies periodically with time.
This effect is called Beats. Suppose two waves of
frequencies f1 and f2 (<f1) are meeting at some point in space.
The corresponding periods are T1 and T2 (>T1). If the two
waves are in phase at t=0, they will again be in phase when
the first wave has gone through exactly one more cycle
than the second. This will happen at a time t=T, the period
of the beat. Let n be the number of cycles of the first wave
in time T, then the number of cycles of the second wave in
the same time is  (n–1).
Hence,  T = nT1= (n–1) T2

Eliminating n we have 1 2

2 1 1 2

1 2

T T 1 1T
1 1T T f f
T T

  
 

The reciprocal of the beat period is the beat frequency
1 2

1f f f
T

  

Waves Interference On The Bases Of Beats :
Conditions % Two equal frequency waves travel in same direction.

Mathematical analysis

If displacement of first wave y1 = a sin 1t    (N1 , a) I  N2a2

Displacement of second wave y2 = a sin 2t    (N2 , a)

By superposition y = y1 + y2

Equation of resulting wave y = a {sin 2N1t + sin 2 N2t}

y = a 1 2 1 2(N N ) (N N )2 sin 2  t cos2 t
2 2
  

  
 

= 1 2(N N )2a cos2 t
2
  

 
 sin 2t 1 2(N N )

2


  = A sin 2N't

Amplitude  A = 2a Cos 2t  1 2N N
2
 

    = 2a cos t  (N1 – N2)      Frequency  N' = 1 2N N
2

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For max Intensity ( A = ±  2a ): –
If cos  (N1 – N2) t =  ± 1  cos (N1 – N2) t = cos n , n = 0, 1, 2, .........

 (N1 – N2)t  = n  t = 
1 2

n
N N  = 0, 

1
N , 

2
N , 

3
N .............

For Minimum Intensity (A  =  0) :

 cos (N1 – N2) t  =  0   cos (N1 – N2) t = cos (2n + 1) 
2


    n = 0, 1, 2 .............

 (N1 – N2) t  =  (2n + 1) 
2


  t = 
1 2

2n 1
2(N N )


 = 

1
2 N , 

3
2 N , 

5
2 N   .............

(i) When we added wax on tuning fork then the frequency of fork decreases.

(ii) When we file the tuning fork then the frequency of fork increases.

Ex. A tuning fork having n = 300 Hz produces 5 beats/s with another tuning fork. If impurity (wax) is added on the arm
of known tuning fork, the number of beats decreases then calculate the frequency of unknown tuning fork.

Sol. The frequency of unknown tuning fork should be 300 + 5 = 295 Hz or 305 Hz.
When wax is added, if it would be 305 Hz, beats would have increases but with 295 Hz beats is decreases so
frequency of unknown tuning fork is 295 Hz.

Ex. A tuning fork having n = 158 Hz, produce 3 beats/s with another. As we file the arm of unknown, beats become 7
then calculate the frequency of unknown.

Sol. The frequency of unknown tuning fork should be 158 ± 3 = 155 Hz or 161 Hz.
After filling the number of beats = 7 so frequency of unknown tuning fork should be

158 ± 7 = 165 Hz or 151 Hz.
As both above frequency can be obtain by filing so frequency of unknown = 155/161 Hz.

Ex. Wavelength of two notes in air are 
90

175
 
 
 

m and 
90

173
 
 
 

m. Each note produces four beats per second with a third

note of a fixed frequency. Calculate the velocity of sound in air.

Sol. Given 1
90

175
m  and 2

90
173

m 

Let f1 and f2 be the corresponding, frequencies and v be the velocity of sound in air.
v = 1 f1 and v = 2f2

1
1

    vf


  and 2
2

vf




Since  2  >1  f1  >  f2

Let be the frequency of the third note.
 f1 – f = 4 and f – f2 = 4

 f1 – f2 = 8 
1 2

8v v
 
 

175 173 8
90 90

v     


2 8
90

v   
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Ex. Figure shows a tube structure in which a sound signal is sent from one end and is received at the other end. The
semicircular part has a radius of 10.0 cm. The frequency of the sound source can be varied from 1 to 10 kHz. Find
the frequencies at which the ear perceives maximum intensity. The speed of sound in air = 342 m/s.

Sol. The sound wave bifurcates at the junction of the straight and the semiconductor parts. The wave through the
straight part travels a distance s1 = 2 × 10 cm and the wave through the curved part travels a distance s2 =  10 cm
= 31.4 cm before they meet again and travel to the receiver. The path difference between the two waves received is,
therefore,

s = s2 – s1 = 31.4 cm – 20 cm = 11.4 cm

The wavelength of either wave is 
v
f  = 

330 /m s
f

. For constructive interference, p = n, where n is an integer..

or, . vp n
f

    
.n vf
p





.342 3000

(0.114)
n n

Thus, the frequencies within the specified range which cause maximum of intensity are
3000 × 1 3000 × 2 and 3000 × 3 Hz

Ultrasonic, Infrasonic and Audible (sonic) Sound :
Sound waves can be classified in three groups according to their range of frequencies.

(i) Infrasonic Waves
Longitudinal waves having frequencies below 20 Hz are called infrasonic waves. They cannot be heard by human
beings. They are produced during earthquakes. Infrasonic waves can be heard by snakes.

(ii) Audible Waves
Longitudinal waves having frequencies lying between 20-20,000 Hz are called audible waves.

(iii) Ultrasonic Waves
Longitudinal waves having frequencies above 20,000 Hz are called ultrasonic waves. They are produced and
heard by bats. They have a large energy content.

Applications of  Ultrasonic Waves
Ultrasonic waves have a large range of application. Some of them are as follows:
(i) The fine internal cracks in metal can be detected by ultrasonic waves.
(ii) Ultrasonic waves can be used for determining the depth of the sea, lakes etc.
(iii) Ultrasonic waves can be used to detect submarines, icebergs etc.
(iv) Ultrasonic waves can be used to clean clothes, fine machinery parts etc.
(v) Ultrasonic waves can be used to kill smaller animals like rates, fish and frogs etc.

Shock Waves
If the speed of the body in air is greater than the speed of the sound, then it is called supersonic speed. Such a body
leaves behind a conical region of disturbance which spreads continuously. Such a disturbance is called a 'Shock
Wave'. This wave carries huge energy. If it strikes a building, then the building may be damaged.
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ECHO
Multiple reflection of sound is called an echo. If the distance of reflector from the source is d then,

2d vt

Hence, v = speed of sound and t, the time of echo. 
vtd
2



Since, the effect of ordinary sound remains on our ear for 1/10 second, therefore, if the sound returns to the
starting point before 1/10 second, then it will not be distinguished from the original sound and no echo will be

heard. Therefore, the minimum distance of the reflector is, min
v t 330 1d 16.5m

2 2 10
       

   

Acoustic Doppler effect (Doppler effect for Sound waves)
The apparent change in the frequency of sound when the source of sound, the observer and the medium are in
relative motion is called Doppler effect. While deriving these expressions, we make the following assumptions
(i) The velocity of the source, the observer and the medium are along the line joining the positions of the

source and the observer.
(ii) The velocity of the source and the observer is less than velocity of sound.

Doppler effect takes place both in sound and light. In sound it depends on whether the source or observer or
both are in motion while in light it depends on whether the distance between source and observer is increasing
or decreasing.

Notations
n   actual frequency n'  observed frequency (apparent frequency)
  actual wave length '  observed (apparent) wave length
v  velocity of sound vs velocity of source
v0  velocity of observer vw  wind velocity

Case I : Source in motion, observer  at rest, medium at rest :

v

S O

both source and observer at rest

n waves

S n
n n'=n

(rest)(rest)

Suppose the source S and observer O are separated by distance v. Where v is the velocity of sound. Let n be the
frequency of sound emitted by the source. Then n waves will be emitted by the source in one second. These n
waves will be accommodated in distance v.

So, wave length  =
total distance

total number of waves =
v
n

(i) Source moving towards stationary observer :
Let the sources start moving towards the observer with velocity vs. After one second, the n waves will be crowded
in distance (v – vs). Now the observer shall feel that he is listening to sound of wavelength ' and frequency n'

v–vS

S'

v

S vS

S O
n n'(moving) (rest)

vS

O

Now apparent wavelength ' = 
total distance

total number of waves = sv v
n

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and changed frequency, n' =
v

' = 
s

v
v v

n
 

  

=
s

vn
v v

 
  

So, as the source of sound approaches the observer the apparent frequency n' becomes greater than the true
frequency n.

(ii) When source move away from stationary observer :-
For this situation n waves will be crowded in distance v + vs.

SS'

vS

S O
n n'(moving) (rest)

vS

v+vS

O

So, apparent wavelength ' = sv v
n


and

Apparent frequency n' = 
v

'  = 
s

v
v v

n
 

 
 

= s

s

vn
v v

 
  

    So n' < n

Case II : Observer in motion, source at rest, medium at rest
Let the source (S) and observer (O) are in rest at their respective places. Then n waves given by source 'S' would
be crossing observer 'O' in one second and fill the space OA (=v)

O AS

v

both source S and O at rest

S O
n n'=n(rest) (rest)

(i) Observer moves towards stationary source

S A

vo

S O
n n'

(rest) (moving)

vO

v + vo

O' O

v

When observer 'O' moves towards 'S' with velocity vo, it will cover vo distance in one second. So the observer has
received not only the n waves occupying OA but also received additional number of n waves occupying the
distance OO' (= vo).
So, total waves received by observer in one second  i.e., apparent frequency  (n') = Actual waves (n) + Additional
waves (n)

n' = ovv


 
 =  

ov v
v n


 = 
ov vn

v
 

 
 

v
n

    
Q   (so, n' > n)

(ii) Observer moves away from stationary source :-
For this situation n waves will be crowded in distance v – vo.

S O O' O

v v  o

vo v

n n'
(rest)

voS O
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When observer move away from source with vo velocity then he will get n waves less than real number of waves.
So, total number of waves received by observer i.e.

Apparent frequency (n') = Actual waves (n) – reduction in number of waves (n)

n' = ovv


 
= ov v


 =  

ov v
v n


= 
ov v n

v
 

 
 

v
n

    
Q  (so n' < n)

Table : Doppler Frequencies (f') for different situations

  

Source S tationary S ource Toward Observer S ource Away from Obs erver

Observer Stationary f

Observer toward source

Observer away from s ource

s

vf
v v

 
 

  s

vf
v v

 
  

0v vf
v
 

  
0

0

v v
f

v v
 
  

0v v
f

v
 

 
  0

vf
v v

 
   s

vf
v v

 
 

 

0

s

v v
f

v v
 
  

Wind Effect
The above formula can be modified by taking the wind effects into account. The velocity of sound should be taken as

v + vw or v – vw if the wind is blowing in the same or opposite direction as SO (source to observer)

(i) If medium (air) is also moving with vm velocity in direction of source to observer. Then velocity of sound relative

to observer will be v ± vm (–ve sign, if vm is opposite to sound velocity). So,  n' = m o

m s

v v vn
v v v

  
  m

(ii) If medium moves in a direction opposite to the direction of propagation of sound, then m o

m S

v v vn ' n
v v v

  
    

(iii)  Source in motion towards the observer. Both medium and observer are at rest. 
S

vn ' n
v v

 
   

So, when a source of sound approaches a stationary observer, the apparent frequency is more than the actual
frequency.

(iv) Source in motion away from the observer. Both medium and observer are at rest. 
S

vn ' n
v v

 
   

. So, when a

source of sound moves away from a stationary observer, the apparent frequency is less than actual frequency.

(v) Observer in motion towards the source. Both medium and source are at rest. ov vn ' n
v
    

. So, when ob

server is in motion towards the source, the apparent frequency is more than the actual frequency.

(vi) Observer in motion away from the source. Both medium and source are at rest.  
  
 

ov vn ' n
v

. So, when

observer is in motion away from the source, the apparent frequency is less than the actual frequency.

(vii) Both source and observer are moving away from each other. Medium at rest. o

S

v vn ' n
v v

 
   

ETOOS KEY POINTS
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Doppler's Effect in Reflection of Sound (ECHO)
When the sound is reflected from the reflector the observer receives two notes one directly from the source and
other from the reflector. If the two frequencies are different then superposition of these waves result in beats and
by the beat frequency we can calculate speed of the source.
If the source is at rest and reflector is moving towards the source with speed u,

then apparent frequency heard by reflector 1
v un n

v
    

Now this frequency n1 acts as a source so that apparent frequency received by observer is

2 1
v v v un n n

v u v u v
                  

v u n
v u
    

If u << v then
1 2

2
u u u 2un n 1 1 n 1 n 1
v v v v


                           

Beat frequency n = n2 – n 
2u n
v

     So speed of the source 
v nu
2 n

    

Conditions When Doppler's effect is not observed for sound waves
(i) When the source of sound and observer both are at rest then Doppler effect is not observed.

(ii) When the source and observer both are moving with same velocity in same direction.

(iii) When the source and observer are moving mutually in perpendicular directions.
(iv) When the medium only is moving.
(v) When the distance between the source and observer is constant.
Ex. When both source and observer approach each other with a speed equal to the half the speed of sound, then

determine the percentage change in frequency of sound as detected by the listener.

Sol. Source
v
2

v
2  Observer n

v v

v v n
v

v
n n'





F

H
GGG

I

K
JJJ 

F

H
GGG

I

K
JJJ 2

2

2
1
2

3

% change =
n ' n 3n n100 100

n n
 

    = 
2n 100
n

  = 200 %

Ex. Two trains travelling in opposite directions at 126 km/hr each, cross each other while one of them is whistling.
If the frequency of the node is 2.22 kHz find the apparent frequency as heard by an observer in the other train:
(a) Before the trains cross each other
(b) After the trains have crossed each other. (vsound = 335 m/sec)

Sol. Here  v1 = 126 × 
5

18  = 35 m/s

(i) In this situation  v1      v1

Observed frequency n' = 
v v
v v

n


F
HG

I
KJ1

1
 = 335 35

335 35
2220


FHG IKJ  = 2738 Hz

(ii) In this situation   v1        v1

Observed frequency n' = 
v v
v v

n


F
HG

I
KJ1

1
 = 335 35

335 35
2220


FHG IKJ  = 1800 Hz
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Ex. A stationary source emits sound of frequency 1200 Hz. If wind blows at the speed of 0.1v, deduce
(a) The change in the frequency for a stationary observer on the wind side of the source.
(b) Report the calculations for the case when there is no wind but the observer moves at 0.1v speed towards

the source. (Given : velocity of sound = v)
Sol.

(a) Medium moves in the direction of sound propagation i.e. from source to observer
so effective velocity of sound veff = v + vm

since both source and observer are at rest  n' = 
v v
v v

m

m

 
 

F
HG

I
KJ

0
0 n = 

v v
v v



FHG IKJ
0 1
0 1

.

. n = n

so there is no change in frequency

(b) When observer move towards source n' = 
v v

v
F

HG
I
KJ0

n = 
v 0.1 v

v
 

   n

          = 1.1 n = 1.1 × 1200 Hz = 1320 Hz

Ex. A bat is flitting about in a cave, navigating via ultrasonic beeps. Assume that the sound emission frequency of the
bat is 40 kHz. During one fast swoop directly toward a flat wall surface, the bat is moving at 0.03 times the speed of
sound in air. What frequency does the bat hear reflected off the wall ?

Sol.
The apparent frequency heard by the bat of reflected sound

0

s

v vn ' n
v v

 
   

 = v 0.03 v 40
v 0.03 v
    

 = 1.03 v 40
0.97v

 = 42.47 kHz
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A wave is a disturbance that propagates in space, transports energy and momentum from one point to another
without the transport of matter.

1. Classification of  Waves

Medium              
Necessity 

Mechanical (Elastic) waves

Non - mechanical waves 
(EM waves)

Propagation
of energy

Progressive waves

Stationary (standing) waves

Transverse waves

Longitudinal waves
Dimension

1-D (Waves on strings)

3-D (Sound or light waves)
2-D (Surface waves or ripples on water)

(a) A mechanical wave will be transverse or longitudinal depending on the nature of medium and mode of excitation.
(b) In strings, mechanical waves are always transverse.
(c) In gases and liquids, mechanical waves are always longitudinal because fluids cannot sustain shear.
(d) Partially transverse waves are possible on a liquid surface because surface tension provide some rigidity on a liquid

surface. The waves are called as ripples as they are combination of transverse & longitudinal.
(e) In solids mechanical waves (may be sound) can be either transverse or longitudinal depending on the mode of

excitation.
(f) In longitudinal wave motion, oscillatory motion of the medium particles produce regions of compression (high

pressure) and rarefaction (low pressure).

2. Plane Progressive Waves

(a) Wave equation : y = A sin(t – kx) where 2k 


 = wave propagation constant.

(b) Differential equation : 
2

2

y
x



 = 
2

2 2
P

1 y
v t




Wave velocity (phase velocity)  
dx ωv = =
dt k  t – kx  = constant  

dx
dt k




(c) Particle Velocity pv cos( )dy A t kx
dt

     pv v × slope = – v dy
dx

    
 

(d) Particle acceleration : 
2

2 2
2 – sin( ) –p
ya A t kx y

t
  

   

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For particle 1 : v p   and a p 

For particle 2 : pv   and a p 

For particle 3 : v p   and a p 

For particle 4 : v p   and a p 

(e) Relation between phase difference, path difference & time  difference

2
T

T
 
 
  

 

3. Energy in Wave Motion

(a) 2 2 2 2 2
p p

KE 1 Δm 1 1v ρv ρω A cos ( )
volume 2 volume 2 2

t kx     
 

(b)
2

2 2 2 2PE 1 1ρv ρω A cos ( )
volume 2 2

dy t kx
dx

    
 

(c) 2 2 2TE ρω A cos ( )
volume

t kx 

(d) Energy  density [i.e. Average total energy / volume] 2 21 ρω A
2

u 

(e) Power : P = (energy density) (volume / time) 2 21 ρω A (Sv)
2

P    
 

[where S = Area  of cross - section]

(f) Intensity : 2 2Power 1I = ρω A v
area of cross section 2



4. Speed of transverse wave on string :

Tv


   where µ = mass / length and T = tension in the string

5. A wave can be represented by function ( )y f kx t   because it satisfy the differential equation 
2 2

2 2 2
1y y

x v t
  

     

where wv
k

 .

6. A pulse whose wave function is given by y = 4 / [(2x + 5t)2 + 2] propagates in –x direction as this wave function is
of the form  y = f (kx + t) which represent a wave travelling in –x direction.
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7. Longitudinal waves can be produced in solids, liquids and gases because bulk modulus of elasticity is present in all
three.

8. Wave Front

(a) Spherical wave from (source  point source)

(b) Cylindrical wave front (source  linear source)  

(c) Plane wave front (source  point / linear source at
very large distance)

9. Intensity of Wave

(a) Due to point source  I  2
1
r  Ay(r,t) = sin ωt – k.r

r
r r

(b) Due to cylindrical source I 
1
r

Ay(r,t) = sin (ωt – k.r)
r

r r

(c) Due to plane source I = constant y(r,t) =A sin (ωt – k.r)
r r

10. Interference of Waves
y1 = A1sin (t – kx), y2 = A2sin (t – kx + 0)
y = y1 + y2 = A sin (t – kx + )

where 2 2
1 2 1 2 0A = A  + A 2A A cos

and
2 0

1 2 0

sin
tan

cos
A

A A








As I A2

So 1 2 1 2 02 cosI I I I I   
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(a) For constructive interference [Maximum intensity]
0   = 2n or path difference = n  where n = 0, 1, 2, 3, ..............

 2max 1 2I I I 

(b) For destructive interference (Minimum Intensity]

0 = (2n + 1) p or path difference =  (2 1)
2

n 


where n = 0, 1, 2, 3, .........  2min 1 2I I I 

Degree of hearing  = max min

max min
100

I I
I I






11. Reflection and Refraction (transmission) of waves

(a) The frequency of the wave remain unchanged.

(b) Amplitude of reflected wave   Ar = 










21

12
vv
vv

 AAi

(c) Amplitude of transmitted wave At = 







 21

2
vv

v2
 AAi

(d) v2 > v1 i.e. medium - 2 is rarer.
Ar > 0  no phase change in reflected wave

(e) If v2 < v1 i.e. medium - 1 is rarer

Ar < 0   There is a phase change of  in reflected wave

(f) As At is always positive whatever be v1 & v2 the phase of transmitted wave always remains unchanged.
(g) In case of reflection from a denser medium or  support or fixed end, there is invention of reflected wave i.e. phase

difference of  between reflected and incident wave.
(h) The transmitted wave is never inverted.
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Beats :
When two sound waves of nearly equal (but not exactly equal) frequencies travel in same direction, at a given point
due to their super position, intensity alternatively increases and decreases periodically. This periodic waxing and
waning of sound at a given position is called beats.
Beat frequency = difference of frequencies of two interfering waves

12. Stationary waves or standing waves
When two waves of same frequency and amplitude travel in opposite direction at same speed, their superstition
gives rise to a new type of wave, called stationary waves or standing waves.
Formation of standing wave is possible only in bounded medium.

(i) Let two waves are   y1 = Asin(t – kx) ;  y2 = Asin(t + kx) by principle of
superposition  y = y1 + y2 = 2Acoskx sin t  Equation of stationary wave

(ii) As this equation satisfies the wave equation 
2 2

2 2 2
1y y

x v t
 


 

,  it represent a wave.

(iii) Nodes  amplitude is minimum :  cos 0 , , ,.......kx x  
3 5cos 0 , , ,.......

4 4 4
kx x   

  

(iv) Antinodes  amplitude is maximum : cos 1 0, , , ,.......kx x  
3cos 1 0, , , ,.......

2 2
kx x    

(v) The  nodes divide the medium into segments (loops). all the particles in a segment vibrate in same phase but in
opposite phase with the particles in the adjacent segment.

(vi) As nodes are permanently at rest, so no energy can be transmitted across them, i.e. energy of one region (segment)
is confined in that region.

13. Transverse stationary waves in stretched string
(i) Fixed at both ends [fixed end  Node & free end  Antinode]

Fundamental or first harmonic
2
vf 
l

Second harmonic first overtone
2
2
vf 
l

Third harmonic first overtone
3
2
vf 
l
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(ii) Fixed at one end

Fundamental
4
vf 
l

Third harmonic first overnote
3
4
vf 
l

Fifth harmonic first overnote
5
4
vf 
l

seventh harmonic first overnote
7
4
vf 
l

14. Sonometer

plucking
(freeend)

fixed
N A

N

2n
p Tf

µ


l

[ p : number of loops]

15. Sound Waves
Velocity of sound in a medium of elasticity E and density  is

                    Solids
(Young’s Modulus)

 Fluids
(Bulk Modulus)

Ev =
ρ

Yv =
ρ

Bv =
ρ

(i) Newton’s Formula : Sound propagation is isothermal B = P 
Pv = 
ρ

(ii) Laplace correction  : Sound propagation is adiabatic B = γP  v = 
γPγP  v =
ρ



16. With rise in temperature, velocity of sound in a gas increases as
w

γRT v =
M

17. With rise in humidity velocity of sound increases due to presence of water in air.
18. Pressure has no effect on velocity of sound in a gas as long as temperature remains constant.
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19. Displacement and pressure wave
A sound wave can be described either in terms of the longitudinal displacement suffered by the particles of the
medium (called displacement wave) or in terms of the excess pressure generated due to compression and rarefaction
(called pressure wave).
Displacement wave y = Asin (t – kx)
Pressure wave p = p0 cos (t – kx)

where p0 = ABk = Av
Note : As sound-sensors (e.g. ear or mike) detect pressure changes, description of sound as pressure wave is preferred

over displacement wave.
20. The pressure wave is 90° out of phase w.r.t. displacement wave, i.e. displacement will be maximum when pressure is

minimum and vice-versa.

21. Intensity in terms of pressure amplitude 
2
0p I =

2ρv
22. Vibrations of organ pipes

Stationary longitudinal waves closed end  displacement node, open end  displacement antinode
(i) Closed end organ pipe

  
λ=
4

l  
vf =
4l

3λ=
4

l  
3vf =
4l

5λ=
4

l 
5vf =
4l

(a) Only odd harmonics are present
(b) Maximum possible wavelength = 4 ฀

(c) Frequency of mth overnote = (2 1)
4
vm 
l

(ii) Open end organ pipe

λ=
2

l  
vf =
2l = λl  

2vf =
2l        

3λ=
2

l  
3vf =
2l

(a) All harmonics are present
(b) Maximum possible wavelength is 2 

(c) Frequency of mth overnote =  ( 1)
2
vm 
l

(iii) End correction :
Due to finite motion of air momentum of air molecules in organ pipes reflection takes place not exactly at open end
but some what above it so antinode is not formed exactly at free end but slightly above it.

In closed organ pipe 1 4( )
vf

e


l where e = 0.6 R ( R = radius of pipe)

In open organ pipe 1 2( 2 )
vf

e


l
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23. Resonance Tube

Wavelength  = 2(2 – 1) End correction 2 13
2

e 


l l

24. Intensity of sound in decibels

Sound level, 10
110log

10
SL    

 

where I0 = threshold of human ear = 10–12 W/m2

25. Characteristics of sound
(a) Loudness  Sensation received by the ear due to intensity of sound.
(b) Pitch  Sensation received by the ear due to frequency of sound.
(c) Quality (or Timber)  Sensation received by the ear due to waveform of sound.

26. Doppler’s effect in sound
A stationary source emits wave fronts that propagate with constant velocity with constant separation between
them and a stationary observer encounters them at regular constant intervals at which they were emitted by the
source.
A moving observer will encounter more or lesser number of waveforms depending on whether he is approaching or
receding the source.
A source in motion will emit different wave front at different places and therefore alter wavelength i.e. separation
between the wavefronts.
The apparent change in frequency or pitch due to relative motion of source and observer along the line of sight is
called Doppler effect.

n
Source vs

Sound Wave
   observerv0

Observed frequency  Speed of sound wave w.r.t. observern' = 
observed wavelength

      
0 0

s s

v + v v + v  n' = n
v – v  v - v

n

 
  

   
 
 
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If v0 , vs <<< v then 
sv + v  

n'  1 n
v

   
 

speed of sourceMach Number = 
speed of sound

27. Doppler’s effect in light :
Case I : Observer Light Source

     v S

1
Frequency   v' =  v  1

1
  Violet Shift

1
Wavelength  λ' =    1  

1

v
vc vv c

c

v
vc

v c
c

 

 
                 


                  

Case I : Observer Light Source

  v S

1
Frequency   v' =  v  1

1
  Red Shift

1
Wavelength  λ' =    1  

1

v
vc vv c

c

v
vc

v c
c

 

 
                 


                  


