

#### **1. DEFINITIONS**

**1.1 Trial and Event :** An experiment is called a **trial** if it results in anyone of the possible outcomes and all the possible outcomes are called **events**.

**1.2 Exhaustive Events :** Total possible outcomes of an experiment are called its **exhaustive events**.

**1.3 Favourable Events :** Those outcomes of a trial in which a given event may happen, are called **favourable cases** for that event.

**1.4 Equally likely events :** Two or more events are said to be **equally likely events** if they have same number of favourable cases.

**1.5 Mutually exclusive or disjoint events :** Two or more events are said to be **mutually exclusive**, if the occurrence of one prevents or precludes the occurrence of the others. In other words they cannot occur together.

**1.6 Simple and Compound events :** If in any experiment only one event can happen at a time then it is called a **simple event**. If two or more events happen together then they constitute a **compound event**.

**1.7 Independent and Dependent events :** Two or more events are said to be **independent** if happening of one does not affect other events. On the other hand if happening of one event affects (partially or totally) other event, then they are said to be **dependent events**.

**1.8 Sample Space :** The set of all possible outcomes of a trial is called its **sample space**. It is generally denoted by S and each outcome of the trial is said to be a point of sample of S.

#### 2. MATHEMATICAL DEFINITION OF PROBABILITY

Let there are n exhaustive, mutually exclusive and equally likely cases for an event A and m of those are favourable to it, then probability of happening of the event A is defined by the ratio m/n which is denoted by P(A). Thus

 $P(A) = \frac{m}{n} = \frac{No.of favourable cases to A}{No.of exhaustive cases to A}$ 

#### Note :

It is obvious that  $0 \le m \le n$ . If an event A is certain to happen, then m = n thus P (A) = 1. If A is impossible to happen then m = 0 and so P (A) = 0. Hence we conclude that

$$0 \leq P(A) \leq 1$$

Further, if  $\overline{A}$  denotes negative of A i.e. event that A doesn't happen, then for above cases m, n ; we shall have

$$P(\overline{A}) = \frac{n-m}{n} = 1 - \frac{m}{n} = 1 - P(A)$$
  

$$\therefore P(A) + P(\overline{A}) = 1$$

#### 3. ADDITION THEOREM OF PROBABILITY Case I : When events are mutually exclusive:

If A and B are mutually exclusive events then  $n (A \cap B) = 0 \implies P (A \cap B) = 0$  $\therefore P (A \cup B) = P (A) + P (B)$ 

For any three events A, B, C which are mutually exclusive then P (A  $\cap$  B) = 0, P (B  $\cap$  C) =

0, P (C  $\cap$  A) = 0 and P (A  $\cap$  B  $\cap$  C) = 0  $\therefore$  P (A  $\cup$  B  $\cup$  C) = P (A) + P (B) + P (C)

The probability of happening of any one of several mutually exclusive events is equal to the sum of their probabilities, i.e. if  $A_1, A_2, ..., A_n$  are mutually exclusive events then

 $P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) +.... + P(A_n)$ 

i.e. P ( $\sum A_i$ ) =  $\sum P (A_i)$ 

# Case II : When events are not mutually exclusive.

If A & B are two events which are not mutually exclusive then.

P  $(A \cup B) = P (A) + P (B) - P (A \cap B)$ or P (A + B) = P (A) + P (B) - P (AB)For any three events A, B, C P  $(A \cup B \cup C) = P (A) + P (B) + P (C) - P$ P  $(A \cap B) - P (B \cap C) - P (C \cap A)$ + P  $(A \cap B \cap C)$ or P (A + B + C) = P (A) + P (B) + P(C) - P(AB) - P (BC) - P (CA) + P (ABC)

#### 4. SOME IMPORTANT RESULTS

(a) Let A and B be two events, then

- (i)  $P(A) + P(\overline{A}) = 1$
- (ii)  $P(A + B) = 1 P(\overline{A}\overline{B})$



(iii) P (A + B) = P (AB) + P ( $\overline{A}B$ ) + P(A $\overline{B}$ ) (iv) A  $\subset$  B  $\Rightarrow$  P (A)  $\leq$  P (B) (v) P ( $\overline{A}B$ ) = P (B) - P (AB) (vi) P(AB)  $\leq$  P(A)P(B)  $\leq$  P(A+B)  $\leq$  P(A)+P(B) (vii) P(AB) = P(A) + P(B) - P(A + B) (viii) P (Exactly one event) = P(A $\overline{B}$ ) + P ( $\overline{A}B$ )= P (A)+P(B)-2p (AB) = P (A+B) - P (AB) (ix) P(neither A nor B) = P( $\overline{A}\overline{B}$ )=1-p (A+B) (x) P ( $\overline{A}+\overline{B}$ ) = 1 - P (AB) (b) Number of exhaustive cases of tossing n coins simultaneously (or of tossing a coin n times) = **2**<sup>n</sup>

(c) Number of exhaustive cases of throwing n dice simultaneously (or throwing one dice n times) =  $6^n$ 

#### (d) Playing Cards :

(i) Total : 52 (26 red, 26 black)

(ii) Four suits : Heart, Diamond, Spade,

Club - 13 cards each

(iii) Court Cards : 12 ( 4 Kings, 4 queens, 4 jacks)

(iv) Honour Cards : 16 ( 4 aces, 4 kings, 4 queens , 4 jacks)

## SOLVED PROBLEMS

- **Ex.1** One card is drawn from a pack of playing cards, then find the probability that it is a card of king
- **Sol.** Probability of one card to be king  $p = \frac{4}{50} = \frac{1}{40}$

(:: favourable cases = 4, Total cases = 52)

**Ex.2** If P (A) =  $\frac{3}{8}$ , then find the odds in against of A

**Sol.** 
$$P(A) = \frac{3}{8} \implies P(\overline{A}) = 1 - \frac{3}{8} = \frac{5}{8}$$

∴ odds in against of

$$A = \frac{P(A)}{P(A)} = \frac{5}{3} = 5:3$$

**Ex.3** If the probability for A to fail in an examination is 0.2 and that of B to fail is 0.3, then find the probability that either A or B fails

Sol. Let A be event for A to fail and B be the Sol. event for B to fail, then P (A) = 0.2 and P(B) = 0.3 Since A and B are independent events,  $\therefore$  P (AB) = P(A) P (B)  $\therefore$  Required probability = P(A+ B) = P(A) + P (B) - P (AB) = P(A) + P (B) - P (A) P(B)

$$= 0.2 + 0.3 - 0.2 \times 0.3$$
  
= 0.5 - 0.06 = 0.44

- **Ex.4** If two dice are thrown together then what is the probability that the sum of their numbers is greater than 9.
- **Sol.** The sum of the numbers greater than 9 may be 10,11 and 12. If these events be A, B,

C respectively, then P (A) = 3/36 [:: favourable cases are (6, 4), (5, 5), (4, 6)]

P(B) = 2/36

- [:: favourable cases are (6, 5), (5, 6)] P (C) = 1/36
- [:: favourable case is (6, 6)]

Now since A, B, C are mutually exclusive,

so P(A + B + C)

= P(A) + P(B) + P(C) $= \frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{1}{6}$ 

**Ex.5** Two cards are drawn one by one from a pack of 52 cards. If the first card is not replaced in the pack , then what is the probability that first card is that of a king and second card is that of a queen?

Let A  $\equiv\,$  first card is that of a king

 $B \equiv$  second card is that of a queen

that P(A) = 
$$\frac{4}{52} = \frac{1}{13}$$
, P (B/A) =  $\frac{4}{51}$ ;  
 $\therefore$  P (AB) = P (A) P (B/A)  
 $= \frac{1}{13} \cdot \frac{4}{51} = \frac{4}{663}$ 

**Ex.6** Three coins are tossed together. What is the probability of getting tail on first, head on second and tail on third coin?

**Sol.** Let the three events be denoted by A, B and C respectively, then

P(A) = P(B) = P(C) = 1/2 since the events A,B and C are independent

$$\therefore P(ABC) = P(A)P(B)P(C) = 1/8$$

- Ex.7 One person can kill a bird twice in 3 shots, second once in 3 shots and third thrice in 4 shots. If they shot together then what is the probability that the bird will be killed?
- **Sol.** If A, B, C denote events of killing the bird by first second and third person respectively, then

P(A) = 2/3, P(B) = 1/3, P(C) = 3/4

The bird will be killed if atleast one of these three independent events happens. So Required probability

$$= 1 - P(A_1)P(A_2)P(A_3)$$
  
= 1 - (1 - 2/3) (1 - 1/3)  
(1 - 3/4)  
= 1 - 1/3, 2/3, 1/4 = 17/18

- **Ex.8** If from a factory a labourer is chosen, randomly. the probability that he is a male is 0.6 and is married is 0.7. Find the probability that the chosen labourer is a married woman
- **Sol.** Let A and B respectively be two events that a chosen labourer is a man and is married, then required probability

$$= P(\overline{AB}) = \{1 - P(A)\} P(B) \\= (1 - 0.6) (0.7) = 0.28$$

- **Ex.9** A speaks truth in 75% cases and B in 80% cases. What is the probability that they contradict each other in stating the same fact?
- **Sol.** There are two mutually exclusive cases in which they contradict each other i.e.  $\overline{AB}$

and AB. Hence Required probabili

$$= P(A\overline{B} + \overline{AB}) = P(A\overline{B}) + P(\overline{AB})$$
$$= P(A) P(\overline{B}) + P(\overline{A}) P(B)$$
$$3 \quad 1 \quad 1 \quad 4 \quad 7$$

- **Ex.10** The letters of the word HIRDESH are written in a row randomly. Find the probability of the words starting with H and ending with H
- **Sol.** Total no. of case  $s = \frac{7!}{2!}$  Since H is written at first and last places, therefore at the remaining 5 places, 5 letters can be written in 5! ways.

$$\therefore$$
 Required probability =  $\frac{5!}{7!/2!} = \frac{1}{21}$ 

**Ex.11** If a dice is thrown twice, then find the probability of getting 1 in the first throw only

- **Sol.** Probability of getting 1 in first throw =  $\frac{1}{6}$ Probability of not getting 1 in second throw =  $\frac{5}{6}$  Both are independent events, so the required probability =  $\frac{1}{6} \times \frac{5}{6} = \frac{5}{36}$
- Ex.12 Two dice are thrown simultaneously. What is the probability of obtaining a multiple of 2 on one of them and a multiple of 3 on the other
- **Sol.** Favourable cases for one are three i.e. 2,4 and 6 and for other are two i.e. 3,6. Hence required probability

$$= \left[ \left( \frac{3 \times 2}{36} \right) 2 - \frac{1}{36} \right] = \frac{11}{36}$$

[As same way happen when dice changes numbers among themselves]

Ex.13 A target is hit by A, 4 times out of 5 attempts; by B, 3 times out of 4 attempts and by C, 2 times out of 3 attempts. Find the probability that the target is hit by two of themSol. The following mutually exclusive cases are

The following mutually exclusive cases are possible.

(i) 
$$AB\overline{C}$$
 (ii)  $A\overline{B}C$  (iii)  $\overline{A}BC$ 

Since A, B and C are independent event

therefore  $P(AB\overline{C}) = P(A) P(B) P(\overline{C})$ 

$$= \frac{4}{5} \cdot \frac{3}{4} \left(1 - \frac{2}{3}\right) = \frac{1}{6}$$
  
Similarly

P (ABC) =  $\frac{8}{60}$  and P(ABC) =  $\frac{6}{60}$ Thus the required probability

= 
$$P(AB\overline{C}) + P(A\overline{B}C) + P(\overline{A}BC)$$
  
=  $\frac{12}{60} + \frac{8}{60} + \frac{6}{60} = \frac{26}{60}$ 

- **Ex.14** Three numbers are selected one by one from whole numbers 1 to 20. Find the probability that they are consecutive integers
- **Sol.** Total number of sequences of 3 numbers selected one by one from whole numbers 1 to 20

 $= {}^{20}P_3 = 20 \times 19 \times 18$ 

Now sequences which will contain three consecutive integers are (1, 2, 3) (2, 3, 4), (3, 4, 5)....., (18, 19, 20).

These are 18 sequences. Hence  $\therefore$  required probability

$$= \frac{18}{20 \times 19 \times 18} = \frac{1}{380}$$



## EXERCISE

- getting a tail.
- **Q.2** A die is thrown. Find the probability of getting a 5
- **Q.3** In a single throw of two dice, find the probability of getting a sum less than 6
- **Q.4** In a single throw of two dice, find the probability an odd number on the first die and a 6 on the second.
- **Q.5** A bag contains 4 white and 5 black balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is white.
- **Q.6** An urn contains 9 red, 7 white and 4 black balls. A ball is drawn at random. Find the probability that the ball drawn is red
- **Q.7** In a lottery, there are 10 prizes and 25 blanks. Find the probability of getting a prize.
- **Q.8** If there are two children in a family, find the probability that there is at least one boy in the family.
- **Q.9** Three unbiased coins are tossed once. Find the probability of getting exactly 2 tails
- Q.10 In a single throw of two dice, determine the probability of not getting the same number on the two dice.
- Q.11 If a letter is chosen at random from the English alphabet, find the probability that the letter chosen is (i) a vowel, and (ii) a consonant.
- **Q.12** A card is drawn at random at from a well-shuffled pack of 52 cards. What is the probability that the card bears a number greater then 3 and less than 10?
- Q.13 Tickets numbered from 1 to 12 are mixed up together and then a ticket is withdrawn at random. Find the probability that the ticket has a number which is a multiple of 2 or 3.

- Q.1 A coin is tossed once. Find the probability of Q.14 What is probability that an ordinary year has 53 Tuesdays ?
  - Q.15 What is the probability that a leap year has 53 Sundays?
  - Q.16 What is the probability that in a group of two people, both will have the same birthday, assuming that there are 365 days in a year and no one has his/her birthday on 29th February ?
  - **Q.17** Which of the following cannot be the probability of occurrence of an event ?

(i) 0 (ii) 
$$\frac{-3}{4}$$
 (iii)  $\frac{3}{4}$  (iv)  $\frac{4}{3}$ 

- **Q.18** If  $\frac{7}{10}$  is the probability of occurrence of an event, what is the probability that it does not occur ?
- Q.19 The odds in favour of the occurrence of an event are 8 : 13. Find the probability that the event will occur.
- Q.20 If the odds against the occurrence of an event be 4 : 7, find the probability of the occurrence of the event.
- Q.21 If 5/14 is the probability of occurrence of an event, find
  - (i) the odds in favour of its occurrence
  - (ii) the odds against its occurrence
- Q.22 Two dice are thrown. Find
  - (i) the odds in favour of getting the sum 6
  - (ii) the odds against getting the sum 7
- Q.23 A combination lock on a suitcase has 3 wheels, each labelled with nine digits from 1 to 9. If an opening combination is a particular sequence of three digits with no repeats, what is the probability of a person guessing the right combination?

- Q.24 In a lottery, a person chooses six different numbers at random from 1 to 20. If these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability that he wins the prize in the game ?
- Q.25 In a single throw of three dice, find the probability of getting (i) a total of 5 (ii) a total of at most 5.
- **Q.26** If A and B are two events associated with a random experiment for which P(A) = 0.60, P(A or B) = 0.85 and P(A and B) = 0.42, find P(B).
- **Q.27** Let A and B be two events associates with a random experiment for which P(A) = 0.4, P(B) = 0.5 and P(A or B) = 0.6. Find P(A and B).
- **Q.28** In a random experiment, let A and B be events such that P(A or B) = 0.7,
  - $P(A \text{ and } B) = 0.3 \text{ and } P(\overline{A}) = 0.4.$ Find P(B).
- **Q.29** If A and B are two events associated with a random experiment such that P(A) = 0.25, P(B) = 0.4 and P(A or B) = 0.5, find the values of (i) P(A and B) (ii)  $P(A \text{ and } \overline{B})$
- **Q.30** If A and B two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and  $P(A \cap B) = 0.1$ , find (i)  $P(\overline{A} \cap B)$  (ii)  $P(A \cap \overline{B})$
- **Q.31** If A and B are two mutually exclusive events such that P(A) = (1/2) and P(B) = (1/3), find P(A or B).
- **Q.32** Let A and B be two mutually exclusive events of a random experiment such that P(not A) = 0.65and P(A or B) = 0.65, find P(B).

**Q.33** A, B, C are three mutually exclusive and exhaustive events associated with a random experiment. If P(B) = 3/2 P(A) and P(C) = 1/2P(B), find P(A).

Page # 5

- **Q.34** The probability that a company executive will travel by plane is (2/5) and that he will travel by train is (1/3). Find the probability of his traveling by plane or train.
- Q.35 From a well-shuffled pack of 52 cards, a card is drawn at random. Find the probability of its being a king or a queen.
- **Q.36** From a well-shuffled pack of cards, a card is drawn at random. Find the probability of its being either a queen or a heart.
- Q.37 A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
- Q.38 A number is chosen from the numbers1 to 100. find the probability of its being divisibleby 4 or 6.
- Q.39 A die is thrown twice. What is the probability that at least one of the two throws comes up with the number 4 ?
- Q.40 Two dice are tossed once. Find the probability of getting an even number on the first die or a total of 8.
- Q.41 Two dice are thrown together. What is the probability that the sum of the numbers on the two faces is neither divisible by 3 nor by 4 ?
- Q.42 In a class, 30% of the students offered mathematics, 20% offered chemistry and 10 % offered both. If a student is selected at random, find the probability that he has offered mathematics or chemistry.

- Q.43 The probability that Hemant passes in English is (2/3) and the probability that he passes in Hindi is (5/9). If the probability of his passing both the subjects is (2/5), find the probability that he will pass in at least one of these subjects.
- **Q.44** The probability that a person will get an electrification contract is (2/5) and the probability that he will not get a plumbing contract is (4/7). If the probability of getting at least one contract is (2/3), what is the probability that he will get both ?
- **Q.45** The probability that a patient visiting a dentist will have a tooth extracted is 0.06, the probability that he will have a cavity filled is 0.2. and the probability he will a tooth extracted or a cavity filled is 0.23. What is the probability that he will have a tooth extracted as well as a cavity filled ?
- Q.46 In a town of 6000 people, 1200 are over 50 years old and 2000 are females. It is known that 30 % of the females are over 50 years. What is the probability that a randomly chosen individual from the town is either female or over 50 years ?



#### Page # 6