# ELECTRIC CHARGE AND FIELD ELECTRIC FIELD

#### ELECTRIC FIELD

Electric field is the region around charged particle or charged body in which if another charge is placed, it experiences electrostatic force.

#### Electric field intensity $\vec{\mathsf{E}}$ :

Electric field intensity at a point is equal to the electrostatic for experienced by a unit positive point charge both in magnitude and direction.

If a test charge  $q_0$  is placed at a point in an electric field and experiences a force  $\vec{F}$  due to some charges (called source charges), the electric field intensity at that point due to source charges is given by

$$\vec{E} = rac{\vec{F}}{q_0}$$
 ;

If the  $\vec{E}$  is to be determined practically then the test charge  $q_0$  should be small otherwise it will affect the charge distribution on the source which is producing the electric field and hence modify the quantity which is measured.

- Example. A positively charged ball hangs from a long silk thread. We wish to measure E at a point P in the same horizontal plane as that of the hanging charge. To do so, we put a positive test charge q<sub>0</sub> at the point and measure F/q<sub>0</sub>. Will F/q<sub>0</sub> be less than, equal to, or greater than E at the point in question?
- **Solution.** When we try to measure the electric field at point P then after placing the test charge at P it repels the source charge (suspended charge) and the

measured value of electric field  $E_{measured} = \frac{F}{q_0}$  will be less than the actual

value Eact that we wanted to measure

#### Properties of electric field intensity $\vec{E}$ :

- (i) It is a vector quantity. Its direction is the same as the force experienced by positive charge.
- (ii) Direction of electric field due to positive charge is always away from it while due to negative charge always towards it.
- (iii) Its S.I. unit is Newton/Coulomb.
- (iv) Its dimensional formula is [MLT<sup>-3</sup>A<sup>-1</sup>]
- (v) Electric force on a charge q placed in a region of electric field at a point where the electric field intensity is  $\vec{E}$  is given by  $\vec{F} = q\vec{E}$ . Electric force on point charge is in the same direction of electric field on positive charge and in opposite direction on a negative charge.
- (vi) It obeys the superposition principle, that is, the field intensity at a point due to a system of charges is vector sum of the field intensities due to individual point charges.

 $\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$ 

(vii) It is produced by source charges. The electric field will be a fixed value at a point unless change the distribution of source charges.

# CLASS 12

### PHYSICS

Ŵ

| Example.  | Electrostatic force experienced by $-3\mu$ C charge placed at                                                                            |   |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
|           | point 'P' due to a system 'S' of fixed point charges as shown $Q_{\bullet}$                                                              |   |  |  |  |  |
|           | in figure is $\vec{F} = (21\hat{i} + 9\hat{j}) \mu N.$                                                                                   |   |  |  |  |  |
|           | (i) Find out electric field intensity at point P due to S.                                                                               |   |  |  |  |  |
|           | (ii) If now 2 C charge is placed and $-3 \ \mu$ C is removed at                                                                          |   |  |  |  |  |
|           | point P then force experienced by it will be.                                                                                            |   |  |  |  |  |
| Solution. | (i) $\vec{F} = q\vec{E} \implies (21\hat{i} + 9\hat{j})\mu N = -3\mu C(\vec{E}) \implies \vec{E} = -7\hat{i} - 3\hat{j} \frac{\mu N}{C}$ |   |  |  |  |  |
|           | (ii) Since the source charges are not disturbed the electric field intensity at                                                          |   |  |  |  |  |
|           | 'P' will remain same.                                                                                                                    |   |  |  |  |  |
|           | $\vec{F}_{2\mu C} = +2(\vec{E}) = 2(-7\hat{i} - 3\hat{j}) = -14\hat{i} - 6\hat{j}\mu N$                                                  |   |  |  |  |  |
|           |                                                                                                                                          |   |  |  |  |  |
| Example.  | Calculate the electric field intensity which would be just sufficient to balance                                                         | ì |  |  |  |  |
|           | the weight of a particle of charge $-10 \ \mu c$ and mass 10 mg. (take g = 10 ms <sup>2</sup>                                            |   |  |  |  |  |

As force on a charge q in an electric field  $\,\vec{\mathsf{E}}\,$  is  $\,\vec{\mathsf{F}}\,_q = q\,\vec{\mathsf{E}}\,$ F₀ ↑ Solution. A ∮ q ↓E So according to given problem

 $|\vec{F}_{q}| = |\vec{W}|$  i.e., |q|E = mg

$$E = \frac{mg}{|q|} = 10 \text{ N/C., in downward direction.}$$

# CLASS 12

# List of formula for Electric Field Intensity due to various types of charge

distribution :

| · · · · · · · · · · · · · · · · · · · |                                                                        |                                                                                                                                                                                                                                      |          |  |  |
|---------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Name / Type                           | Formula                                                                | Note                                                                                                                                                                                                                                 | Graph    |  |  |
| Point charge                          | $\vec{E} = \frac{Kq}{ \vec{r} ^2} \cdot \hat{r}$                       | <ul> <li>q is source charge.</li> <li>if is vector drawn from source<br/>charge to the test point.</li> <li>outwards due to +charges<br/>&amp; inwards due to -charges.</li> </ul>                                                   |          |  |  |
| Infinitely long line charge           | $\frac{\lambda}{2\pi\epsilon_0 r}\hat{r} = \frac{2K\lambda\hat{r}}{r}$ | <ul> <li>q is linear charge density<br/>(assumed uniform)</li> <li>r is perpendicular distance<br/>of point from line charge.</li> <li>is radial unit vector drawn<br/>from the charge to test point.</li> </ul>                     |          |  |  |
| Infinite non-conducting thin sheet    | $\frac{\sigma}{2\varepsilon_0}$ n                                      | <ul> <li>o is surface charge density.<br/>(assumed uniform)</li> <li>is unit normal vector.</li> <li>x = distance of point on the<br/>axis from centre of the ring.</li> <li>electric field is always<br/>along the axis.</li> </ul> | di22en r |  |  |
| Uniformly charged ring                | $E = \frac{KQx}{(R^2 + x^2)^{3/2}}$ $E_{\text{cerm}} = 0$              | <ul> <li>Q is total charge of the ring</li> <li>x = distance of point on the<br/>axis from centre of the ring.</li> <li>electric field is always<br/>along the axis.</li> </ul>                                                      |          |  |  |

| Infinitely large charged conducting sheet                                         | <del>ອ</del><br>ε <sub>0</sub>                                                                                           | <ul> <li>σ is the surface charge .</li> <li>density (assumed uniform)</li> <li>n is the unit vector perpendicular<br/>is the surface.</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | αnia<br>→ r |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Uniformly charged hollow<br>conducting/ nonconducting /solid<br>conducting sphere | (i) for $r \ge R$<br>$\vec{E} = \frac{kQ}{ \vec{r} ^2}\hat{r}$<br>(ii) for $r < R$<br>E = 0                              | <ul> <li>R is radius of the sphere.</li> <li>r         <sup>*</sup> is vector drawn from centre<br/>of sphere to the point.</li> <li>Sphere acts like a point charge.<br/>placed at centre for points outside<br/>the sphere.</li> <li>E is always along radial direction.</li> <li>Q is total charge (= σ4πR<sup>2</sup>).<br/>(σ = surface charge density)</li> </ul>                                                                                                                                        |             |
| Uniformly charged solid<br>nonconducting<br>sphere (insulating material)          | (i) for $r \ge R$<br>$\vec{E} = \frac{kQ}{ \vec{r} ^2} \vec{r}$ (ii) for $r \le R$<br>$\vec{E} = \frac{kQ}{R^3} \vec{r}$ | $ \begin{array}{l} \widehat{\tau} & \text{is vector drawn from centre} \\ \text{of sphere to the point} \\ & \text{* Sphere acts like a point charge} \\ & \text{placed at the centre for points} \\ & \text{outside the sphere} \\ & \widehat{E} & \text{is always along radial dir} \\ & ^{*}\text{Q is total charge } (n, \frac{4}{3} \pi R^3), \\ & (\rho = \text{volume charge density}) \\ & ^{*} \text{ Inside the sphere E} \propto r, \\ & \text{* Outside the sphere E} \propto 1/r^2. \end{array} $ |             |

#### CLASS 12

Example. Six equal point charges are placed at the corners of a regular hexagon of side'a'. Calculate electric field intensity at the center of hexagon?



#### Answer.

Zero

Similarly electric field due to a uniformly charged ring at the centre of ring :



Note :

- (i) Net charge on a conductor remains only on the outer surface of a conductor. This property will be discussed in the article of the conductor.
- (ii) On the surface of isolated spherical conductor charge is uniformly distributed.