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ELECTRIC CHARGE AND FIELD 

APPLICATIONS OF GAUSS’S LAW 

 

APPLICATIONS OF GAUSS’S LAW 

The electric field due to a general charge distribution is, as seen above, In practice, except 

for some special cases, the summation (or integration) involved in this equation cannot be 

carried out to give electric field at every point in space. For some symmetric charge 

configurations, however, it is possible to obtain the electric field in a simple way using the 

Gauss’s law. This is best understood by some examples. 

 

Consider an infinitely long thin straight wire with uniform linear charge density λ. The wire 

is obviously an axis of symmetry. Suppose we take the radial vector from O to P and rotate 

it around the wire. The points P, P′, P′′ so obtained are completely equivalent with respect 

to the charged wire. This implies that the electric field must have the same magnitude at 

these points. The direction of electric field at every point must be radial (outward if λ > 0, 

inward if λ < 0). This is clear    

Consider a pair of line elements P1 and P2 of the wire, as shown. The electric fields 

produced by the two elements of the pair when summed give a resultant electric field 

which is radial (the components normal to the radial vector cancel). This is true for any 

such pair and hence the total field at any point P is radial. Finally, since the wire is infinite, 

electric field does not depend on the position of P along the length of the wire. In short, the 

electric field is everywhere radial in the plane cutting the wire normally, and its magnitude 

depends only on the radial distance r. 

 

To calculate the field, imagine a cylindrical Gaussian surface, as shown in the (b). Since the 

field is everywhere radial, flux through the two ends of the cylindrical Gaussian surface is 

zero. At the cylindrical part of the surface, E is normal to the surface at every point, and its 

magnitude is constant, since it depends only on r. The surface area of the curved part is 

2πrl, where l is the length of the cylinder.  
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Electric field due to an infinitely long thin straight wire is radial,  

(b) The Gaussian surface for a long thin wire of uniform linear charge density. 

 

 Flux through the Gaussian surface = flux through the curved cylindrical part of the surface  

   E × 2πrl 

 The surface includes charge equal to λ l. Gauss’s law then gives E × 2πrl = λl/ε 0i.e.    
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 Vectorially, E at any point is given by 
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where nˆ is the radial unit vector in the plane normal to the wire passing through the point. 

E is directed outward if λ is positive and inward if λ is negative 

 

Note that when we write a vector A as a scalar multiplied by a unit vector, i.e., as A = A aˆ, 

the scalar A is an algebraic number. It can be negative or positive. The direction of A will be 

the same as that of the unit vector aˆ if A > 0 and opposite to aˆ if A < 0. When we want to 

restrict to non-negative values, we use the symbol A and call it the modulus of A. Thus, A ≥ 

0 . 

Also note that though only the charge enclosed by the surface (λl) was included above, the 

electric field E is due to the charge on the entire wire. Further, the assumption that the wire 

is infinitely long is crucial. Without this assumption, we cannot take E to be normal to the 

curved part of the cylindrical Gaussian surface. However, is approximately true for electric 

field around the central portions of a long wire, where the end effects may be ignored. 
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Electric field due to infinite line charge (having uniformly distributed charged of charge 

density  ) : 

 

 

Electric field due to infinite wire is radial so we will choose cylindrical Gaussian  

surface as shown is figure. 
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Electric field due to infinity long charged tube (having uniform surface charge  

density and radius R)): 
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(i)  E out side the tube :- lets choose a cylindrical gaussian surface   
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(ii)  E inside the tube : 

 lets choose a cylindrical gaussian surface in side the tube. 

 net = inq


 = 0    

 So Ein = 0 


