APPLICATIONS OF DERIVATIVES

MAXIMA & MINIMA

Global Maximum :

A function f(x) is said to have global maximum on a set E if there exists at least one $c \in E$ such that $f(x) \leq f(c)$ for all $x \in E$. We say global maximum occurs at x = c and global maximum (or global maximum value) is

f(c).

Local Maxima :

A function f(x) is said to have a local maximum at x = c if f(c) is the greatest value of the function in a small neighborhood (c - h, c + h), h > 0 of c.

i.e. for all $x \in (c - h, c + h)$, $x \neq c$, we have $f(x) \leq f(c)$.

Note : If x = c is a boundary point then consider (c - h, c) or (c, c + h) (h > 0)

appropriately.

Global Minimum :

A function f(x) is said to have a global minimum on a set E if there exists at least one $c \in E$ such that $f(x) \ge f(c)$ for all $x \in E$.

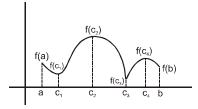
Local Minima :

A function f(x) is said to have a local minimum at x = c if f(c) is the least value of the function in a small neighbourhood (c - h, c + h), h > 0 of c.

i.e. for all $x \in (c - h, c + h)$, $x \neq c$, we have $f(x) \ge f(c)$.

Extrema :

A maxima or a minima is called an extrema. Explanation : Consider graph of $y = f(x), x \in [a, b]$



CLASS 12

x = a, $x = c_2$, $x = c_4$ are points of local maxima, with maximum values f(a), f(c_2), f(c_4) respectively.

 $x = c_1$, $x = c_3$, x = b are points of local minima, with minimum values $f(c_1)$, $f(c_3)$, f(b) respectively

 $x = c_2$ is a point of global maximum

 $x = c_3$ is a point of global minimum

Consider the graph of $y = h(x), x \in [a, b)$



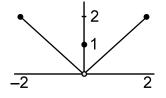
 $x = c_1$, $x = c_4$ are points of local maxima, with maximum values $h(c_1)$, $h(c_4)$ respectively. x = a, $x = c_2$ are points of local minima, with minimum values h(a), $h(c_2)$ respectively. $x = c_3$ is neither a point of maxima nor a minima.

Global maximum is $h(c_4)$

Global minimum is h(a)

Ex.1 Let $f(x) = \begin{cases} |x| & 0 < |x| \le 2\\ 1 & x = 0 \end{cases}$. Examine the behaviour of f(x) at x = 0.

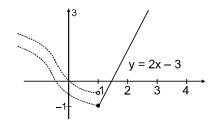
Sol. f(x) has local maxima at x = 0 (see figure).



Ex.2 Let
$$f(x) = \begin{cases} -x^3 + \frac{(b^3 - b^2 + b - 1)}{(b^2 + 3b + 2)} & 0 \le x < 1 \\ 2x - 3 & 1 \le x \le 3 \end{cases}$$

Find all possible values of b such that f(x) has the smallest value at x = 1.

Sol. Such problems can easily be solved by graphical approach (as in figure).



Hence the limiting value of f(x) from left of x = 1 should be either greater or equal to the value of function at x = 1.

$$\lim_{x \to 1^{-}} f(x) \ge f(1)$$

$$\Rightarrow -1 + \frac{(b^3 - b^2 + b - 1)}{(b^2 + 3b + 2)} \ge -1$$

$$\Rightarrow \frac{(b^2 + 1)(b - 1)}{(b + 1)(b + 2)} \ge 0$$

$$\Rightarrow b \in (-2, -1) \cup [1, +\infty)$$

Maxima, Minima for differentiable functions :

Mere definition of maxima, minima becomes tedious in solving problems. We use derivative as a tool to overcome this difficulty.

(i) A necessary condition for an extrema : Let f(x) be differentiable at x = c.

Theorem : A necessary condition for f(c) to be an extremum of f(x) is that f'(c) = 0.

i.e. f(c) is extremum $\Rightarrow f'(c) = 0$

Note : f'(c) = 0 is only a necessary condition but not sufficient

i.e. $f'(c) = 0 \implies f(c)$ is extremum.

Consider $f(x) = x^3$

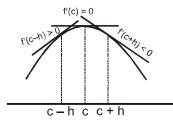
$$f'(0) = 0$$

but f(0) is not an extremum (see figure).

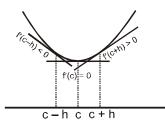
(ii) Sufficient condition for an extrema : Let f(x) be a differentiable function.

Theorem : A sufficient condition for f(c) to be an extremum of f(x) is that f'(x) changes sign as x passes through c.

i.e. f(c) is an extrema (see figure) \Leftrightarrow f'(x) changes sign as x passes through c.



x = c is a point of maxima. f'(x) changes sign from positive to negative.



x = c is a point of local minima (see figure), f'(x) changes sign from negative to positive.

Stationary points :

The points on graph of function f(x) where f'(x) = 0 are called stationary points.

Rate of change of f(x) is zero at a stationary point.

Ex.3 Find stationary points of the function $f(x) = 4x^3 - 6x^2 - 24x + 9$.

Sol.
$$f'(x) = 12x^2 - 12x - 24$$

 $f'(x) = 0 \implies x = -1, 2$ f(-1) = 23, f(2) = -31

(-1, 23), (2, -31) are stationary points

Ex.4 If $f(x) = x^3 + ax^2 + bx + c$ has extreme values at x = -1 and x = 3. Find a, b, c.

$$f'(-1) = 0 = f'(3)$$

$$f'(x) = 3x^2 + 2ax + b$$

$$f'(3) = 27 + 6a + b = 0$$

$$f'(-1) = 3 - 2a + b = 0$$

$$\Rightarrow a = -3, b = -9, c \in \mathbb{R}$$

CLASS 12

First Derivative Test :

Let f(x) be continuous and differentiable function.

Step I. Find f'(x)

Step II. Solve f'(x) = 0, let x = c be a solution. (i.e. Find stationary points)

Step III. Observe change of sign

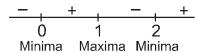
- (i) If f'(x) changes sign from negative to positive as x crosses c from left to right then x
 = c is a point of local minima
- (ii) If f'(x) changes sign from positive to negative as x crosses c from left to right then x= c is a point of local maxima.
- (iii) If f'(x) does not changes sign as x crosses c then x = c is neither a point of maxima nor minima.
- **Ex.5** Find the points of maxima or minima of $f(x) = x^2 (x 2)^2$.

Sol.
$$f(x) = x^2 (x - 2)^2$$

f'(x) = 4x (x - 1) (x - 2)

$$f'(x) = 0 \qquad \Rightarrow \qquad x = 0, 1, 2$$

examining the sign change of f'(x)



Hence x = 1 is point of maxima, x = 0, 2 are points of minima.

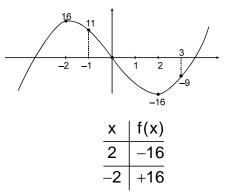
Note : In case of continuous functions points of maxima and minima are alternate.

Ex.6 Find the points of maxima, minima of $f(x) = x^3 - 12x$. Also draw the graph of this functions.

Sol.
$$f(x) = x^3 - 12x$$

$$f'(x) = 3(x^2 - 4) = 3(x - 2) (x + 2)$$
$$f'(x) = 0 \qquad \Rightarrow \qquad x = \pm 2$$

For tracing the graph let us find maximum and minimum values of f(x).

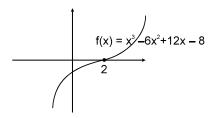


Ex.7 Show that $f(x) = (x^3 - 6x^2 + 12x - 8)$ does not have any point of local maxima or minima. Hence draw graph

Sol.
$$f(x) = x^3 - 6x^2 + 12x - 8$$

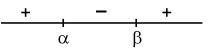
 $f'(x) = 3(x^2 - 4x + 4)$
 $f'(x) = 3(x - 2)^2$
 $f'(x) = 0 \implies x = 2$

but clearly f'(x) does not change sign about x = 2. $f'(2^+) > 0$ and $f'(2^-) > 0$. So f(x) has no point of maxima or minima. In fact f(x) is a monotonically increasing function for $x \in R$.



Ex.8 Let $f(x) = x^3 + 3(a - 7)x^2 + 3(a^2 - 9)x - 1$. If f(x) has positive point of maxima, then find possible values of 'a'.

Sol. $f'(x) = 3 [x^2 + 2(a - 7)x + (a^2 - 9)]$ Let α , β be roots of f'(x) = 0 and let α be the smaller root. Examining sign change of f'(x).



Maxima occurs at smaller root α which has to be positive. This basically implies that both roots of f'(x) = 0 must be positive and distinct.

- (i) $D > 0 \qquad \Rightarrow \quad a < \frac{29}{7}$
- (ii) $-\frac{b}{2a} > 0 \implies a < 7$
- (iii) $f'(0) > 0 \implies a \in (-\infty, -3) \cup (3, \infty)$
 - from (i), (ii) and (iii) \Rightarrow $a \in (-\infty, -3) \cup (3, \frac{29}{7})$

Application of Maxima, Minima :

For a given problem, an objective function can be constructed in terms of one parameter and then extremum value can be evaluated by equating the differential to zero. As discussed in nth derivative test maxima/minima can be identified.

(i) Useful Formulae of Mensuration to Remember :

- (a) Volume of a cuboid = λ bh.
- (b) Surface area of cuboid = $2(\lambda b + bh + h\lambda)$.
- (c) Volume of cube = a^3
- (d) Surface area of cube = $6a^2$
- (e) Volume of a cone = $\frac{1}{3} \pi r^2 h$.
- (f) Curved surface area of cone = $\pi r \lambda$ (λ = slant height)
- (g) Curved surface area of a cylinder $= 2\pi rh$.
- (h) Total surface area of a cylinder = $2\pi rh + 2\pi r^2$.
- (i) Volume of a sphere = πr^3 .
- (j) Surface area of a sphere = $\frac{4}{3} 4\pi r^2$.
- (k) Area of a circular sector $=\frac{1}{2} r^2 \theta$, when θ is in radians.
- (l) Volume of a prism = (area of the base) \times (height).
- (m) Lateral surface area of a prism = (perimeter of the base) × (height).
- (n) Total surface area of a prism = (lateral surface area) + 2 (area of the base)

(Note that lateral surfaces of a prism are all rectangle).

- (o) Volume of a pyramid $=\frac{1}{3}$ (area of the base) × (height).
- (p) Curved surface area of a pyramid = $\frac{1}{2}$ (perimeter of the base) × (slant height). (Note that slant surfaces of a pyramid are triangles).
- **Ex.9** If the equation $x^3 + px + q = 0$ has three real roots, then show that $4p^3 + 27q^2 < 0$.

Sol.
$$f(x) = x^3 + px + q$$
, $f'(x) = 3x^2 + p$

 \therefore f(x) must have one maximum > 0 and one minimum < 0. f'(x) = 0

$$\Rightarrow x = \pm \sqrt{\frac{-p}{3}}, \quad p < 0$$

f is maximum at
$$x = -\sqrt{\frac{-p}{3}}$$
 and minimum at $x = \sqrt{\frac{-p}{3}}$
 $f\left(-\sqrt{\frac{-p}{3}}\right) f\left(\sqrt{\frac{-p}{3}}\right) < 0 \qquad \Rightarrow \qquad \left(q - \frac{2p}{3}\sqrt{\frac{-p}{3}}\right) \left(q + \frac{2p}{3}\sqrt{\frac{-p}{3}}\right) < 0$
 $q^2 + \frac{4p^3}{27} \qquad < 0, 4p^3 + 27q^2 < 0.$

Ex.10 Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.

Sol.
$$x + y = 60$$

 $\Rightarrow x = 60 - y$
 $\Rightarrow xy^3 = (60 - y) y^3$
Let $f(y) = (60 - y) y^3$; $y \in (0, 60)$
for maximizing $f(y)$ let us find critical points
 $f'(y) = 3y^2 (60 - y) - y^3 = 0$
 $f'(y) = y^2 (180 - 4y) = 0$
 $\Rightarrow y = 45$
 $f'(45^+) < 0$ and $f'(45^-) > 0$. Hence local maxima at $y = 45$.

So
$$x = 15$$
 and $y = 45$.

- **Ex.11** Rectangles are inscribed inside a semicircle of radius r. Find the rectangle with maximum area.
- **Sol.** Let sides of rectangle be x and y (as shown in figure).

$$\Rightarrow$$
 A = xy.

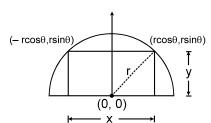
Here x and y are not independent variables and are related by Pythogorus theorem with r.

$$\frac{x^{2}}{4} + y^{2} = r^{2} \qquad \Rightarrow \qquad y = \sqrt{r^{2} - \frac{x^{2}}{4}}$$

$$\Rightarrow \qquad A(x) = x \sqrt{r^{2} - \frac{x^{2}}{4}} \qquad \Rightarrow \qquad A(x) = \sqrt{x^{2}r^{2} - \frac{x^{4}}{4}}$$
Let
$$f(x) = r^{2}x^{2} - \frac{x^{4}}{4}; \qquad x \in (0, r)$$

$$A(x) \text{ is maximum when } f(x) \text{ is maximum}$$
Hence
$$f'(x) = x(2r^{2} - x^{2}) = 0 \qquad \Rightarrow \qquad x = r\sqrt{2}$$
also
$$f'(r\sqrt{2^{+}}) < 0 \text{ and } f'(r\sqrt{2^{-}}) > 0$$
confirming at f(x) is maximum when $x = r\sqrt{2}$ & $y = \frac{r}{\sqrt{2}}$.

Aliter : Let us choose coordinate system with origin as centre of circle (as shown in figure).



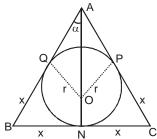
A = xy

 $\Rightarrow A = 2 (r\cos\theta) (r\sin\theta) \qquad \Rightarrow \qquad A = r^2 \sin 2\theta, \ \theta \in \left(0, \frac{\pi}{2}\right)$ ClearlyA is maximum when $\theta = \frac{\pi}{4} \qquad \Rightarrow \qquad x = r\sqrt{2} \text{ and } y = \frac{r}{\sqrt{2}}.$

Ex.12 Show that the least perimeter of an isosceles triangle circumscribed about a circle of radius 'r' is $6\sqrt{3}$ r .

Sol.
$$AQ = r \cot \alpha = AP$$

 $AO = r \csc \alpha$
 $\frac{x}{AO + ON} = \tan \alpha$
 $x = (r \csc \alpha + r) \tan \alpha$



 $x = r(\sec \alpha + \tan \alpha)$ Perimeter = p = 4x + 2AQ $p = 4r(\sec \alpha + \tan \alpha) + 2r\cot \alpha$ $p = r(4\sec \alpha + 4\tan \alpha + 2\cot \alpha)$ $\frac{dp}{d\alpha} = r[4\sec \alpha \tan \alpha + 4\sec^2 \alpha - 2\csc^2 \alpha]$ for max or min $\frac{dp}{d\alpha} = 0 \implies 2\sin^3 \alpha + 3\sin^2 \alpha - 1 = 0$ $\Rightarrow (\sin \alpha + 1) (2\sin^2 \alpha + \sin \alpha - 1) = 0$ $(\sin \alpha + 1)^2 (2\sin \alpha - 1) = 0$ $\Rightarrow \quad \sin \alpha = 1/2$ $\Rightarrow \quad \alpha = 30^\circ = \pi/6$ $pleast = r = \left[\frac{4.2}{\sqrt{3}} + \frac{4}{\sqrt{3}} + 2\sqrt{3}\right] r = \left[\frac{8 + 4 + 6}{\sqrt{3}}\right] r \quad \frac{(6\sqrt{3}\sqrt{3})}{\sqrt{3}} = 6\sqrt{3} r$

- **Ex.13** If a right circular cylinder is inscribed in a given cone. Find the dimensions of the cylinder such that its volume is maximum.
- **Sol.** Let x be the radius of cylinder and y be its height $v = \pi x^2 y$ x, y can be related by using similar triangles (as shown in figure).

$$\frac{y}{r-x} = \frac{h}{r} \implies y = \frac{h}{r} (r-x)$$
$$\Rightarrow v(x) = \pi x^2 \frac{h}{r} (r-x) \qquad x \in (0, r)$$
$$\Rightarrow v(x) = \frac{\pi h}{r} (rx^2 - x^3)$$
$$v'(x) = \frac{\pi h}{r} x (2r - 3x)$$
$$v' = \left(\frac{2r}{3}\right) = 0 \text{ and } v'' \left(\frac{2r}{3}\right) < 0$$
Thus volume is maximum at $x = \left(\frac{2r}{3}\right)$ and $y = \frac{h}{3}$.

Note : Following formulae of volume, surface area of important solids are very useful in problems of maxima & minima.

CLASS 12

MATHS

- **Ex.14** Among all regular square pyramids of volume $36\sqrt{2}$ cm³. Find dimensions of the pyramid having least lateral surface area.
- **Sol.** Let the length of a side of base be x cm and y be the perpendicular height of the pyramid (see figure).

$$V = \frac{1}{3} \times \text{area of base x height} \qquad \Rightarrow \qquad V = \frac{1}{3} \ x^2 y = 36 \sqrt{2} \Rightarrow y = \frac{108\sqrt{2}}{x^2}$$

and $S = \frac{1}{2} \times \text{perimeter of base x slant height} = \frac{1}{2} (4x). \lambda$
but $\lambda = \sqrt{\frac{x^2}{4} + y^2}$
 $\Rightarrow S = 2x \sqrt{\frac{x^2}{4} + y^2} = \sqrt{x^4 + 4x^2y^2}$
 $\Rightarrow S = \sqrt{x^4 + 4x^2 \left(\frac{108\sqrt{2}}{x^2}\right)^2} \qquad S(x) = \sqrt{x^4 + \frac{8.(108)^2}{x^2}}$
Let $f(x) = x^4 + \frac{8.(108)^2}{x^2}$ for minimizing $f(x)$
 $f'(x) = 4x^3 - \frac{16(108)^2}{x^3} = 0$
 $\Rightarrow f'(x) = 4 \ \frac{(x^6 - 6^6)}{x^3} = 0$

 \Rightarrow x = 6, which a point of minima. Hence x = 6 cm and y = $3\sqrt{2}$.

Ex.15 Let A(1, 2) and B(-2, -4) be two fixed points. A variable point P is chosen on the straight line y = x such that perimeter of $\triangle PAB$ is minimum. Find coordinates of P.

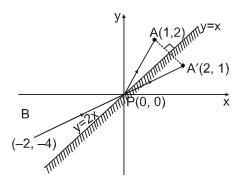
Sol. Since distance AB is fixed so for minimizing the perimeter of $\triangle PAB$, we basically have to minimize (PA + PB) Let A' be the mirror image of A in the line y = x (see figure). F(P) = PA + PB

$$F(P) = PA' + PB$$

But for $\Delta PA'B$

 $PA' + PB \ge A'B$ and equality hold when P, A' and B becomes collinear. Thus for minimum path length point P is that special point for which PA and PB become incident and reflected rays with respect to the mirror y = x.

Equation of line joining A' and B is y = 2x intersection of this line with y = x is the point P. Hence $P \equiv (0, 0)$.



Note : Above concept is very useful because such problems become very lengthy by making perimeter as a function of position of P and then minimizing it.