APPLICATIONS OF DERIVATIVES

APPROXIMATIONS

Error and Approximation :

Let y = f(x) be a function. If these is an error δx in x then corresponding error in y is $\delta y = f(x + \delta x) - f(x).$ We have $\lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = \frac{dy}{dx} = f'(x)$ We define the differential of y, at point x, corresponding to the increment δx as $f'(x) \delta x$ and denote it by dy.

i.e.
$$dy = f'(x) \delta x$$
.

Let $P(x, f(x)), Q((x + \delta x), f(x + \delta x))$ (as shown in figure)

 $\delta y = QS$,

 $\delta \mathbf{x} = \mathbf{PS},$

dy = RS

In many practical situations, it is easier to evaluate dy but not δy .

Ex.1 Find the approximate value of $25^{1/3}$.

Sol. Let
$$y = x^{1/3}$$

Let x = 27 and $\Delta x = -2$ Now $\Delta y = (x + \Delta x)^{1/3} - x^{1/3} = (25)^{1/3} - 3$ $\frac{dy}{dx} \Delta x = 25^{1/3} - 3$ At x = 27, $25^{1/3} = 3 - 0.074 = 2.926$

Ex.2 Find the approximate value of $(33)^{1/5}$

Sol. Let
$$y = f(x) = x^{1/5}$$
. Now $f'(x) = \frac{1}{5}x^{\frac{3}{5}}$
We have $f(a + h) = f(a) + h f'(a)$
 $\Rightarrow (a + h)^{1/5} = a^{1/5} + h. a^{-4/5}$

1

Putting a = 32, h = 1 we get $(33)^{1/5} = 32^{1/5} + 1. (32)^{-4/5}$ = 2 + $\frac{1}{5} \frac{1}{16} = 2 + \frac{1}{80} = 2.0125$ (approximate)