DETERMINANTS

MINORS AND COFACTORS

MINORS & COFACTORS

Let D be a determinant. Then minor of element a_{ij} , denoted by M_{ij} , is defined as the determinant of the submatrix obtained by deleting ith row & jth column of D. Cofactor of element a_{ij} , denoted by C_{ij} , is defined as

$$C_{ij} = (-1)^{i} + j M_{ij}.$$

e.g. 1 D = M₁₁ = d = C₁₁
M₁₂ = c, C₁₂ = - c
M₂₁ = b, C₂₁ = -b
M₂₂ = a = C₂₂
e.g.2 $\Delta = \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$
 $M_{11} = \begin{vmatrix} q & r \\ y & z \end{vmatrix} = qz - yr = C_{11}.$
 $M_{23} = \begin{vmatrix} a & b \\ x & y \end{vmatrix} = ay - bx, C_{23} = -(ay - bx) = bx - ay \text{ etc.}$

Ex.1 Find the minors and cofactors of elements of the matrix $A = [a_{ij}] = \begin{bmatrix} 1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2 \end{bmatrix}$.

Sol. Let M_{ij} and C_{ij} denote respectively the minor and cofactor of element a_{ij} in A. Then,

$$M_{11} = \begin{vmatrix} -5 & 6 \\ 5 & 2 \end{vmatrix} = -10 - 30 = -40 \implies C_{11} = M_{11} = -40$$

MATHS

$$M_{12} = \begin{vmatrix} 4 & 6 \\ 3 & 2 \end{vmatrix} = 8 - 18 = -10 \qquad \Rightarrow \qquad C_{12} = -M_{12} = 10$$
$$M_{13} = = \begin{vmatrix} 4 & -5 \\ 3 & 5 \end{vmatrix} = 20 + 15 = 35 \qquad \Rightarrow \qquad C_{13} = M_{13} = 35$$
$$M_{21} = \begin{vmatrix} 3 & -2 \\ 5 & 2 \end{vmatrix} = 6 + 10 = 16 \qquad \Rightarrow \qquad C_{21} = -M_{21} = -16$$
$$M_{22} = = \begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix} = 2 + 6 = 8 \qquad \Rightarrow \qquad C_{22} = M_{22} = 8$$
$$M_{23} = \begin{vmatrix} 1 & 3 \\ 3 & 5 \end{vmatrix} = 5 - 9 = -4 \qquad \Rightarrow \qquad C_{23} = -M_{23} = 4$$

Ex.2 Find the minors and cofactors of elements '-3', '5', '-1' & '7' in the determinant

 $\begin{vmatrix} 2 & -3 & 1 \\ 4 & 0 & 5 \\ -1 & 6 & 7 \end{vmatrix}$

Sol. Minor of
$$-3 = \begin{vmatrix} 4 & 5 \\ -1 & 7 \end{vmatrix} = 33$$
; Cofactor of $-3 = -33$
Minor of $5 = \begin{vmatrix} 2 & -3 \\ -1 & 6 \end{vmatrix} = 9$; Cofactor of $5 = -9$
Minor of $-1 = \begin{vmatrix} -3 & 1 \\ 0 & 5 \end{vmatrix} = -15$; Cofactor of $-1 = -15$
Minor of $7 = \begin{vmatrix} 2 & -3 \\ 4 & 0 \end{vmatrix} = 12$; Cofactor of $7 = 12$

Transpose of a Determinant

The transpose of a determinant is the determinant of transpose of the corresponding matrix.

$$\mathbf{D} = \begin{vmatrix} \mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3} \end{vmatrix} \qquad \qquad \Rightarrow \mathbf{D}^{\mathrm{T}} = \begin{vmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} \\ \mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3} \end{vmatrix}$$