MATRICES

OPERATION ON MATRICES

ALGEBRA OF MATRICES

Addition : $A + B = [a_{ij} + b_{ij}]$ where A & B are of the same order.

(A) Addition of matrices is commutative

i.e. A + B = B + A

(B) Matrix addition is associative

(A + B) + C = A + (B + C)

(C) Additive inverse

If A + B = O = B + A, then B is called additive inverse of A.

(D) Existence of additive identity

Let $A = [a_{ij}]$ be an m × n matrix and **0** be an m × n zero matrix, then $A + \mathbf{0} = \mathbf{0} + A$ = A. In other words, **0** is the additive identity for matrix addition.

- (E) Cancellation laws hold good in case of addition of matrices. If A,B,C are matrices of the same order, then $A + B = A + C \Rightarrow B = C$ (left cancellation law) and $B + A = C + A \Rightarrow B = C$ (right-cancellation law)
- **Note:** The zero matrix plays the same role in matrix addition as the number zero does in addition of numbers.

Ex.1 If $A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$ and A + B - D = O (zero matrix), then D matrix will be-

Sol. Let $D = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$

$$\therefore A+B-D = \begin{bmatrix} 1 & 3 \\ 3 & 2 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \Rightarrow \begin{bmatrix} 1-1-a & 3-2-b \\ 3+0-c & 2+5-d \\ 2+3-e & 5+1-f \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow -a = 0 \qquad \Rightarrow a = 0, \ 1-b = 0 \Rightarrow b = 1,$$
$$3-c = 0 \qquad \Rightarrow c = 3, \ 7-d = 0 \Rightarrow d = 7,$$
$$5-e = 0 \qquad \Rightarrow e = 5, \ 6-f = 0 \Rightarrow f = 6$$
$$D = \begin{bmatrix} 0 & 1 \\ 3 & 7 \\ 5 & 6 \end{bmatrix}.$$

MULTIPLICATION OF MATRIX BY SCALAR

Let l be a scalar (real or complex number) & $A = [a_{ij}]_m \times n$ be a matrix. Thus the product lA is defined as $|A = [b_{ij}]_m \times n$ where $b_{ij} = |a_{ij}|$ i & j.

e.g.: $A = \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 2 & 1 & -3 \\ 0 & 0 & -1 & -2 \end{bmatrix} \& -3A \equiv (-3)A = \begin{bmatrix} -6 & 3 & -9 & -15 \\ 0 & -6 & -3 & 9 \\ 0 & 0 & 3 & 6 \end{bmatrix}$

Note: If A is a scalar matrix, then A = II, where I is a diagonal entry of A

MULTIPLICATION OF MATRICES

Let A and B be two matrices such that the number of columns of A is same as number of rows of B.

i.e.,
$$A = [a_{ij}]_{m \times p} \& B = [b_{ij}]_{p \times n}$$
.

Then AB = $[c_{ij}]_{m \times n}$ where $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$, which is the dot product of ith row

vector of A and jth column vector of B.

e.g.:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix}, AB = \begin{bmatrix} 3 & 4 & 9 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$$

- (i) The product AB is defined if the number of columns of A is equal to the number of rows of B. A is called as premultiplier & B is called as post multiplier. AB is defined BA is defined.
- (ii) In general AB \neq BA, even when both the products are defined.
- (iii) A(BC) = (AB) C, whenever it is defined.

PROPERTIES OF MATRIX MULTIPLICATION

Consider all square matrices of order 'n'. Let M_n (F) denote the set of all square matrices of order n. (where F is Q, R or C). Then

(A)
$$A, B \in M_n(F) \Rightarrow AB \in M_n(F)$$

(B) In general $AB \neq BA$

$$(C) \quad (AB) C = A(BC)$$

(D) I_n , the identity matrix of order n, is the multiplicative identity.

 $\mathsf{AI}_n = \mathsf{A} = \mathsf{I}_n \; \mathsf{A} \qquad "\; \mathsf{A} \in \; \mathsf{M}_n \; (\mathsf{F})$

(E) For every non singular matrix A (i.e., $|A| \neq 0$) of M_n (F) there exist a unique (particular) matrix B Î M_n (F) so that $AB = I_n = BA$. In this case we say that A & B are multiplicative inverse of one another. In notations, we write $B = A^{-1}$ or $A = B^{-1}$.

(F) If l is a scalar (lA)
$$B = l(AB) = A(lB)$$
.

- (G) A(B + C) = AB + AC "A, B, C \in M_n (F)
- (H) (A + B) C = AC + BC "A, B, $C \in M_n (F)$.
- (i) Let $A = [a_{ij}]_{m \times n}$. Then $AI_n = A \& I_m A = A$, where $I_n \& I_m$ are identity matrices of order n & m respectively.
- (ii) For a square matrix A, A^2 denotes AA, A^3 denotes AAA etc.

MATHS

Ex.2 Find the value of x, if
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$$

Sol. We have $\begin{bmatrix} 1 x & 1 \end{bmatrix}_{1 \times 3} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}_{3 \times 3} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}_{3 \times 1} = 0 = 0$
 $\Rightarrow \begin{bmatrix} 1 + 2x + 15 & 3 + 5x + 3 & 2 + x + 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$
 $\Rightarrow \begin{bmatrix} 16 + 2x & 6 + 5x & 4 + x \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$
 $\Rightarrow \begin{bmatrix} (16 + 2x) \cdot 1 + (6 + 5x) \cdot 2 + (4 + x) \cdot x \end{bmatrix} = 0$
 $\Rightarrow \begin{bmatrix} (16 + 2x) + (12 + 10x) + (4x + x^2) = 0 \\ \Rightarrow x^2 + 16x + 28 = 0$
 $\Rightarrow (x + 14) (x + 2) = 0$
 $\Rightarrow x = -14$ or $x = -2$
Hence, $x = -14$ or $x = -2$

POSITIVE INTEGRAL POWERS OF A SQUARE MATRIX

For a square matrix A, $\mathbf{A}^{n} = A.A.A...A$ where n \hat{I} N upto n times

REMEMBER

- (i) $A^{m} A^{n} = A^{m+n}$
- (ii) $(A^m)^n = A^{mn}$, where $m, n \in N$
- (ii) If A and B are square matrices of same order and AB = BA then $(A + B)^n = {}^nC_0A^n + {}^nC_1A^{n-1}B + {}^nC_2A^{n-2}B^2 + \dots + {}^nC_nB^n$

Note: that for a unit matrix I of any order , $I^m=I$ for all $m\in N.$

SPECIAL SQUARE MATRICES

(A) Idempotent Matrix:

A square matrix is idempotent provided $A^2 = A$.

For idempotent matrix note the following:

(i) $A^n = A \quad n \ge 2, n N.$

(ii) determinant value of idempotent matrix is either 0 or 1

(B) Periodic Matrix :

A square matrix which satisfies the relation $A^{k+1} = A$, for some positive integer K, is a periodic matrix. The period of the matrix is the least value of K for which this holds true. **Note**: that period of an idempotent matrix is 1.

(C) Nilpotent Matrix :

A square matrix of the order 'n' is said to be nilpotent matrix of order m, $m \in N$,

if $A^m = 0 \& A^{m-1} \neq 0$.

(D) Involutary Matrix :

If $A^2 = I$, the matrix is said to be an involutary matrix. i.e. square roots of identity matrix is involutary matrix.

Note: The determinant value of involutary matrix is 1 or –1.

Ex.3 Show that
$$\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 is nilpotent matrix of order 3.
Sol. Let $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

MATHS

$$A^{2} = A \cdot A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
$$= \begin{bmatrix} 1+5-6 & 1+2-3 & 3+6-9 \\ 5+10-12 & 5+4-6 & 15+12-18 \\ -2-5+6 & -2-2+3 & -6-6+9 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{bmatrix}$$
$$A^{5} = A^{2} \cdot A = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
$$= \begin{bmatrix} 0+0+0 & 0+0+0 & 0+0+0 \\ 3+15-18 & 3+6-9 & 9+18-37 \\ -1-5+6 & -1-2+3 & -3-6+9 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

 $A^3 = 0$ i.e., $A^k = 0$

Here k = 3

Hence A is nilpotent of order 3.

Ex.4 Show that a square matrix A is involutory, if (I - A) (I + A) = 0

Sol. Let A be involutory

Then $A^2 = I$ (I - A) (I + A) = $I^2 + IA - AI - A^2 = I + A - A - A^2 = I - A^2 = 0$ Conversly, let (I - A) (I + A) = 0

- $\Rightarrow I^2 + IA AI A^2 = 0$
- $\Rightarrow I + A A A^2 = 0$
- \Rightarrow I A² = 0
- \Rightarrow A is involutory