1.1 Basic concept

- Vectors have magnitude and direction, whereas scalars have only magnitude.
- Vector. A directed line segment represents a vector. A vector from P to Q is denoted by \vec{PQ} . P

and Q are called respectively initial and terminal points of the vector \vec{PQ} . The direction of vector

 \overrightarrow{PQ} is from P to Q.

- The magnitude of vector \vec{PQ} is denoted by $|\vec{PQ}|$ and represents length of line segment PQ.
- Zero vector. A vector whose initial and terminal points coincide is called a zero vector. It is also

defined as a vector whose magnitude is zero. It is denoted by $\vec{0}$ or AA, BB etc. $|\vec{0}| = 0, |\vec{0}| = 0,$

 $|\overrightarrow{AA}| = 0.$

- Unit vector. A vector \vec{a} is called a unit vector if its magnitude is one unit. It is denoted by \hat{a} , $|\hat{a}| = 1$. Unit vector represents direction along a vector \vec{a} , also $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$.
 - **Position vector of a point.** If we take a fixed point O, which is called the origin of reference and
- P be any point in the plane, then the vector \overrightarrow{OP} is called the position vector of P relative to O. If position vector of point P is \vec{a} , denoted as P(\vec{a}), then corresponding to some origin of reference \vec{O} , $\vec{OP} = \vec{a}$.
- Line of support. A line, whose segment is PQ, is called the line of support of the vector \vec{PQ} .

1.2 Types of vectors

1. Like vectors. Two vectors are said to be like vectors, if they have (i) same or parallel lines of support.

(ii) same direction.

- 2. Unlike vectors. Two vectors are said to be unlike vectors, if (i) their lines of support are same or parallel, (ii) opposite direction.
- **3.** Equal vectors. Two vectors are said to be equal, if they have (i) same or parallel lines of support, (ii) same direction and (iii) equal magnitudes.
 - We can also say that if like vectors have equal magnitudes then they are equal.
- 4. **Coinitial vectors.** Two or more vectors are said to be coinitial vectors if they have the same

initial point, e.g., AP, AQ, AR etc. are coinitial vectors.

- **5. Collinear vectors.** Two or more vectors are called collinear vectors, if they have the same or parallel lines of support.
- **6. Coplanar vectors.** Any number of non-zero vectors are said to be coplanar if they lie in the same plane or parallel planes.
- 7. Negative vector. A vector which has the same magnitude but opposite direction of the given

vector, is called the negative of the given vector. If $\overrightarrow{PR} = \overrightarrow{x}$ then $\overrightarrow{RP} = -\overrightarrow{x}$.

1.3 Properties with respect to addition

• Triangle law of vector addition. If two vectors are represented along two sides of a triangle taken in order, then their resultant is represented by the third side taken in the opposite order.

If the sides OA and AB of $\triangle OAB$ represent \overrightarrow{OA} and \overrightarrow{AB} ,

then $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$, i.e., $\overrightarrow{OB} = \overrightarrow{a} + \overrightarrow{b}$

• **Parallelogram law of vector addition.** If two vectors are represented along two adjacent sides of a parallelogram, then their resultant is represented along the diagonal of a parallelogram passing through the common vertex of adjacent sides. If the sides OA and OC of a parallelogram OABC represent respectively

 \overrightarrow{OA} and \overrightarrow{OC} , then $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB}$.

Properties with respect to addition

- (i) **Commutative.** For vectors \vec{a} and \vec{b} , we have $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- (ii) **Associative.** For vectors \vec{a} , \vec{b} and \vec{c} , we have $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$
- (iii) Additive identity. For every vector \vec{a} , a zero vector $\vec{0}$ is its additive identity as $\vec{a} + \vec{0}$
- = ā.
 - (iv) Additive inverse. For a vector \vec{a} , a negative of vector \vec{a} is its additive inverse as $\vec{a} + (-\vec{a})$
- = <u>0</u>.

Also for vector \overrightarrow{AB} , its additive inverse is \overrightarrow{BA} as \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = $\vec{0}$, Also, we conclude \overrightarrow{BA} = -

ĂB.

1.4 Properties of with respect to multiplication

- Multiplication of a vector by a scalar. Let \vec{a} be a given vector and k a scalar, then multiplication of vector \vec{a} by scalar k, denoted k \vec{a} , is a vector whose magnitude is k times that of vector \vec{a} and direction is (i) same as that of \vec{a} , if k > 0. (ii) opposite to that of \vec{a} , if k < 0. (iii) a zero vector, if k = 0.
- To prove \vec{a} is parallel to \vec{b} we have to show that $\vec{a} = k \vec{b}$, where k is a scalar.
- Properties with respect to multiplication of a vector by a scalar
 - For vectors \vec{a} , \vec{b} and scalars ℓ , m, we have

(i)
$$\ell(\vec{a} + \vec{b}) = \ell \vec{a} + \ell \vec{b}$$
 (ii) $(\ell + m) \vec{a} = \ell \vec{a} + m \vec{a}$ (iii) $\ell(m \vec{a}) = (\ell m) \vec{a}$.

1.5 Propertes of vectors

To find a vector when position vectors of end points are given :

Let \vec{a} and \vec{b} be the position vectors of end points A and B of a line segment AB. Then, \overrightarrow{AB} =

Position vector of B – Position vector of A = \overrightarrow{OB} – \overrightarrow{OA} = \vec{b} – \vec{a} .

- **Components of a vector.** If $\vec{r} = \vec{a} + \vec{b}$, then \vec{a} and \vec{b} are known as components of \vec{r} .
- Vector in two dimensions :

Let \vec{r} be position vector of a point P(x, y),

- (i) Then $\vec{r} = \stackrel{\rightarrow}{OP} = x_{\hat{i}} + y_{\hat{j}}$
- (ii) $x_{\hat{i}}$ and $y_{\hat{j}}$ are known as component vectors of \vec{r} along x and y-axis and x and y are known as components of \vec{r} along x and y-axis.
- (iii) Magnitude of \vec{r} , is given by, $|\vec{r}| = \sqrt{x^2 + y^2}$.
- (iv) Unit vector along \vec{r} , is given by, $\vec{r} = \frac{\vec{r}}{|\vec{r}|} = \frac{x\hat{i}+y\hat{j}}{|\vec{r}|}$, i.e., $\hat{r} = \frac{x}{|\vec{r}|}\hat{j} + \frac{y}{|\vec{r}|}\hat{j}$.
- (v) If θ is angle which \vec{r} makes with x-axis, then $\cos \theta = \frac{x}{|\vec{r}|}$, $\sin \theta = \frac{y}{|\vec{r}|}$
- (vi) $\cos \theta$, $\sin \theta$ are known as direction cosines of \vec{r} .
- (vii) For $\vec{r} = x_{\hat{i}} + y_{\hat{j}}$; x and y are known as direction ratios of \vec{r} , i.e., components of a vector are direction ratios of \vec{r} , but converse may or may not be true.

• Vector in three dimensions :

- If \vec{r} is position vector of point P(x, y, z)
- (i) Then $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $x\hat{i}$, $y\hat{j}$ and $z\hat{k}$ are component vectors and x, y and z are components of vector \vec{r} along x, y and z-axis.
- (ii) **Magnitude** of \vec{r} , is given by, $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$
- (iii) If α , β , γ are the angles which vector \vec{r} makes with x, y and z-axis, then its direction consies

$$\cos \alpha, \cos \beta, \cos \gamma$$
 are $\cos \alpha = \frac{x}{|\vec{r}|}$; $\cos \beta = \frac{y}{|\vec{r}|}$; $\cos \gamma = \frac{z}{|\vec{r}|}$

- (iv) **Unit vector** along \vec{r} , is given by, $\vec{r} = \frac{x}{|\vec{r}|}\hat{i} + \frac{y}{|\vec{r}|}\hat{j} + \frac{z}{|\vec{r}|}\hat{k} = (\cos \alpha)\hat{i} + (\cos \beta)\hat{j} + (\cos \gamma)\hat{k}$
- (v) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then x, y, z are direction ratios of \vec{r} , i.e., components of a vector are direction ratios of a vector.
- Vector when coordinates of end points are given. If A (x_1, y_1, z_1) and B (x_2, y_2, z_2) be the endpoints of line segment AB, then $\overrightarrow{AB} = (x_2 - x_1)\hat{j} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$.
 - $(x_2 x_1)$, $(y_2 y_1)$ and $(z_2 z_1)$ are components of $\stackrel{\rightarrow}{AB}$ along x, y and z-axis respectively. These are also direction ratios along x, y and z-axis respectively.
- Position vector of a point dividing the line segment in a given ratio (Section formula).
 - Position vector \vec{r} of a point which divides the join of two given points with position vectors \vec{a} and

 \vec{b} in the ratio ℓ : m internally is, $\vec{r} = \frac{\ell b + m \dot{a}}{\ell + m}$.

If point divides externally, in the ratio I : m, then position vector is $\frac{\ell b - m\bar{a}}{\ell - m}$.

• Position vector of the mid-point (1 : 1) of the line segment joining the end points with position vectors \vec{a} and \vec{b} is $\frac{\vec{a} + \vec{b}}{2}$.

1.6 Scalar or dot product of two vectors

• Scalar or dot product of two vectors. If θ is the angle between two given vectors \vec{a} and \vec{b} , then their scalar or dot product, denoted by $\vec{a} \cdot \vec{b}$ is given by $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, where θ is angle between \vec{a} and \vec{b} .

- $\vec{a} \cdot \vec{b}$ is a scalar quantity.
- $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ is not defined.
- **Commutative property.** For vectors \vec{a} and \vec{b} , $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.
- **Associative property.** For vectors \vec{a} , \vec{b} , \vec{c} , associative property does not hold as \vec{a} . $(\vec{b} \cdot \vec{c})$ is not defined.
- **Distributive property.** For vectors \vec{a} , \vec{b} , \vec{c} , ; \vec{a} . $(\vec{b} + \vec{c}) = \vec{a}$. $\vec{b} + \vec{a}$. \vec{c} .
- For vectors \vec{a} and \vec{b} , $\vec{a} \cdot (\lambda \vec{b}) = (\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}), \lambda$ is a scalar.
- For vectors \vec{a} and \vec{b} , \vec{a} . $\vec{b} = 0 \Leftrightarrow \vec{a} = \vec{0}$, $\vec{b} = \vec{0}$ or $\vec{a} \perp \vec{b}$.
- For vector \vec{a} , $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$, i.e., square of a vector is equal to square of its magnitude.
- Projection of \vec{a} along \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$ and projection vector of \vec{a} along \vec{b} is $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$.
- Angle between \vec{a} and \vec{b} is given by, $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$, θ is the angle between \vec{a} and \vec{b} .
- If $\hat{j},\,\hat{j},\,\hat{k}$ are unit vectors along x, y and z-axis respectively, then

$$\hat{i} \cdot \hat{i} = j \cdot j = \hat{k} \cdot \hat{k} = 1; \ \hat{i} \cdot j = 0, \ j \cdot \hat{k} = 0, \ \hat{k} \cdot \hat{i} = 0$$

- If $\vec{a} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$ and $\vec{b} = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$, then $\vec{a} \cdot \vec{b} = a_1a_2 + b_1b_2 + c_1c_2$ If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = 0 \Rightarrow a_1a_2 + b_1b_2 + c_1c_2$ If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = 0 \Rightarrow a_1a_2 + b_1b_2 + c_1c_2$ If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = 0 \Rightarrow a_1a_2 + b_1b_2 + c_1c_2$ If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = a_1a_2 + b_1b_2 + c_1c_2$ If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = a_1a_2 + b_1b_2 + c_1c_2$ If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = a_1a_2 + b_1b_2 + c_1c_2$.
- If θ is angle between $\vec{a} = a_1\hat{j} + b_1\hat{j} + c_1\hat{k}$ and $\vec{b} = a_2\hat{j} + b_2\hat{j} + c_2\hat{k}$, then

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_1^2}}$$

1.7 Vector or cross product of two vectors

- Vector or cross product of two vectors \vec{a} and \vec{b} , denoted by \vec{a} . \vec{b} , is given by
- $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta n$, θ is angle between \vec{a} and \vec{b} , \hat{n} is a unit vector \perp to $\vec{a} \times \vec{b}$, is given by

- \vec{a} and \vec{b} and direction is such that \vec{a} , \vec{b} and \hat{n} form a right hand system.
- $\vec{a} \times \vec{b}$ is a vector quantity, whose magnitude is, $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$.
- If θ is angle between \vec{a} and \vec{b} , then $\sin \theta = \frac{|\vec{a} \times b|}{|\vec{a}||\vec{b}|}$.
- For \vec{a} , $\vec{a} \times \vec{a} = \vec{0}$.
- For vectors \vec{a} and \vec{b} , $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$, i.e., cross product of two vectors is not commutative.
- For \vec{a} , \vec{b} and \vec{c} , $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$, in general. Not associative.
- **Distributive property**. For vectors \vec{a} , \vec{b} and \vec{c} , $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.
- For vectors \vec{a} and \vec{b} , $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} = \vec{0}$, $\vec{b} = \vec{0}$ or $\vec{a} \parallel \vec{b}$.
- If we want to show that two non-zero vectors \vec{a} and \vec{b} are parallel, then we should show that $\vec{a} \times \vec{b} = \vec{0}$.
- Geometrically, $|\vec{a} \times \vec{b}|$ represents area of a parallelogram whose adjacent sides are along \vec{a} and b٠
- Area of a triangle whose sides are along \vec{a} and \vec{b} is given by $\frac{1}{2} |\vec{a} \times \vec{b}|$.
- Area of a parallelogram whose diagonals are along \vec{d}_1 and \vec{d}_2 is given by $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$.
- If \hat{j} , \hat{j} , \hat{k} are vectors along x, y and z-axis respectively, then

$$\hat{j} \times \hat{j} = \vec{0}, \ \hat{j} \times \hat{j} = \vec{0}, \ \hat{k} \times \hat{k} = \vec{0} \ \hat{j} \times \hat{j} = \hat{k}; \ \hat{j} \times \hat{k} = \hat{j}; \ \hat{k} + \hat{j} = \hat{j}.$$

For a scalar λ , $\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a} \times \vec{b}) = (\vec{a} \times \lambda \vec{b})$, where \vec{a} and \vec{b} are given vectors.

h_

6 - 8

SOLVED PROBLEMS

Ex.7

Sol.

Ex.1 Find the projection of $\vec{a} = \hat{i} - 3\hat{k}$ on Sol. $\vec{b} = 3\hat{i} + \hat{j} - 4\hat{k}$. Projection of \vec{a} on $\vec{b} = \frac{\vec{a}.\vec{b}}{|\vec{b}|} = \frac{3+0+12}{\sqrt{9+1+16}} = \frac{15}{\sqrt{26}}$. Sol. If \vec{a} is a unit vector and $(\vec{x} + \vec{a}) \cdot (\vec{x} - \vec{a}) = 15$, Ex.2 *find* | *↓* |. $\vec{x^2} - \vec{a^2} = 15 \implies |\vec{x}|^2 = 15 + |\vec{a}|^2 = 16 \implies |\vec{x}| = 4$ Ex.6 Sol. Find a vector in the direction of vector Ex.3 Sol. $5\hat{i} - \hat{i} - \hat{2}k$ which has magnitude 8 units.

Sol. The unit vector in the direction of vector $\vec{a} = 5\hat{i} - \hat{i} + 2\hat{k}$ is

$$\frac{1}{|\vec{a}|} \cdot \vec{a} = \frac{1}{\sqrt{5^2 + (-1)^2 + 2^2}} (5\hat{i} - \hat{j} + 2\hat{k})$$
$$= \frac{1}{\sqrt{25 + 1 + 4}} (5\hat{i} - \hat{j} + 2\hat{k}) = \frac{1}{\sqrt{30}} (5\hat{i} - \hat{j} + 2\hat{k})$$

The vector of 8 units in the direction of the

vector
$$\vec{a} = \frac{8}{\sqrt{30}} (5\hat{i} - \hat{j} + 2\hat{k})$$

- Ex.4 Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$.
- The resultant of vector $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$ and Sol.
 - $\vec{b} = \hat{i} 2\hat{i} + \hat{k}$ is given by

 $\vec{a} + \vec{b} = (2\hat{i} + 3\hat{j} - \hat{k}) + (\hat{i} - 2\hat{j} + \hat{k}) = 3\hat{i} + \hat{j}$ The unit vector in the direction of $\vec{a} + \vec{b}$ is

$$= \frac{3}{\sqrt{3^2 + 1^2}} \hat{i} + \frac{1}{\sqrt{3^2 + 1^2}} \hat{j} \text{ i.e., } = \frac{3}{\sqrt{10}} \hat{i} + \frac{1}{\sqrt{10}} \hat{j}$$

A vector of magnitude 5 units, and parallel to

$$\vec{a} + \vec{b}$$
 is, therefore, $= 5 \left(\frac{3}{\sqrt{10}} \hat{i} + \frac{1}{\sqrt{10}} \hat{j} \right)$
i.e., $= \frac{3}{2} \sqrt{10} \hat{i} + \frac{\sqrt{10}}{2} \hat{j}$

Ex.5 If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

Here, $\vec{2}a = 2\hat{i} + 2\hat{j} + 2\hat{k}$ $-\vec{b} = -2\hat{i} + \hat{j} + 3\hat{k}$ $3\vec{c} = 3\hat{i} - 6\hat{j} + 3\hat{k}$ and $2\vec{a} - \vec{b} + 3\vec{c} = 3\hat{i} - 3\hat{j} + 2\hat{k}$

The unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$

$$= \frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}$$

Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i}-6\hat{j}-8\hat{k}$ are collinear. Two vectors a - a it a i

$$\vec{b} = b_1\hat{i} - b_2\hat{j} + b_3\hat{k}$$
 are collinear if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{b_3}{b_3}$
For given vectors, we have $\frac{2}{-4} = \frac{-3}{6} = \frac{4}{-8}$

Each is equal to $\frac{-1}{2}$. Hence , the given vectors are collinear.

Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.

For a vector $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, a_1 , a_2 , a_3 are the direction ratios of the vector. Hence, for the given vector,

 $a_1 = 1, a_2 = 2 \text{ and } a_3 = 3.$

$$\frac{1}{\sqrt{1^2 + 2^2 + 3^2}}, \frac{2}{\sqrt{1^2 + 2^2 + 3^2}}, \frac{3}{\sqrt{1^2 + 2^2 + 3^2}}$$

are the required direction cosines.

are the required i.e., $\sqrt{14}$ ' $\sqrt{14}$ ' $\sqrt{14}$ direction cosines.

Ex.8 Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (-5, 7). Sol.

```
The vector joining the initial point (2, 1) and
the terminal point (-5, 7) is = (-5-2)\hat{i} + (7-1)\hat{j}
```

 $= -7\hat{i} + 6\hat{j}$ The scalar components of the vectors are -7 and 6.

Ex.9 Find the unit vector in the direction of vector \vec{PQ} , where P and Q are the points (1, 2, 3) and (4, 5, 6) respectively.

Sol. The vector
$$\overrightarrow{PQ} = (4-1)^{\frac{1}{2}} + (5-2)^{\frac{1}{2}} + (6-3)^{\frac{1}{2}} k$$

 $= 3i + 3j + 3k$
 $|\overrightarrow{PQ}| - |\overrightarrow{\beta}i + 3j + 3k| = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{9 + 9 + 9} = \sqrt{27} = 3\sqrt{3}$
so, the unit vector in the direction of PQ
 $= \frac{1}{3\sqrt{3}} (3i + 3j + 3k) = \frac{1}{\sqrt{3}} i + \frac{1}{\sqrt{3}} j + \frac{1}{\sqrt{3}} k$
Ex.10 Find the direction cosines of the vector
joining the points $A(1, 2, -3)$ and $B(-1, -2, 1)$,
directed from A and B.
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
The direction ratios of \overrightarrow{AB} are, therefore,
 $-2, -4$ and 4 and, the direction cosines are
 $\frac{-1}{3} - \frac{2}{3} \cdot \frac{2}{3}$.
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
Sol. The vector $\overrightarrow{AB} = -2i - 4j + 4k$
Sol. The position vectors of the points $P(2, 3, 4)$
and $Q(4, 1, -2)$.
Sol. The position vector of the mid-point of the
vector \overrightarrow{PQ} is $\frac{5i + 4}{1 + 1}$
 $= \frac{1}{2}[(5i + 4j) + 2k] = 3i + 2j + k$
Ex.12 Show that the position A and A , B and C with
 $\overrightarrow{a} = 3i - 4j - 4k$, $b = 2i - j + k$
 $\overrightarrow{a} = 3i - 4j - 4k$, $b = 2i - j + k$
 $\overrightarrow{a} = 3i - 4j - 4k$, $b = 2i - j + k$
 $\overrightarrow{a} = 3i - 4j - 4k$, $b = 2i - j + k$
Now, $AB = |\overrightarrow{AB}| - |\overrightarrow{AB}| + 5k|$
 $= \sqrt{-1^2 + 3^2 + 5^2} = \sqrt{1 + 9 + 25} = \sqrt{35} = AB^2 = 35$

T

Sol. Here
$$\overrightarrow{AB} = (5-1)\overline{i} + (0-2)\overline{j} + (-2+8)\overline{k} = 4\overline{i} + 2\overline{j} + 6\overline{k}$$

and $\overrightarrow{BC} = (11-5)\overline{i} + (3-0)\overline{j} + (7+2)\overline{k} = 6\overline{i} + 3\overline{j} + 9\overline{k}$
The vectors \overrightarrow{AB} and \overrightarrow{BC} are collinear if $\frac{4}{6} = \frac{2}{3} = \frac{6}{9}$
which is true. Hence, the given points are
 $\overrightarrow{A(1,2,3)} = 1$ $(\cdot\overline{3}, \overline{5} + \overline{c}, \overline{a})$.
Sollinear, Let B divide AC in the ratio k : 1
Then the coordinates of B are :
 $\left(\frac{11k+1}{k+1} + \frac{3k-2}{k+1} - \frac{7k-8}{k+1}\right)$ to $(5, 0, 2)$, we
have $\frac{11k+1}{k+1} = 5$; $\frac{3k-2}{k+1} = 0$; $\frac{7k-8}{k+1} = -2$
which is true for $k = \frac{2}{3}$
Hence, B divides AC Internally in the ratio 2 : 3.
Ex.16 Show that the following points are collinear:
 $A(-2i+3j+5k), B(i+2j+3k)$ and $C(7i-k)$
Sol. $\overrightarrow{AB} = (1+2) + (2-3)\overline{i} + (3-5)\overline{k} = 3\overline{i} - j^2 + 2\overline{k}$
 $\overrightarrow{AC} = (7+2)\overline{i} - 3\overline{j} + (-1-6)\overline{k} = 9\overline{i} - 3\overline{j} - 6\overline{k}$
Further, $\overrightarrow{AB} = \sqrt{9+1+4} = \sqrt{14}$
 $\overrightarrow{AC} = \sqrt{36+4+16} = \sqrt{36} = 3\sqrt{14}$
Therefore, $|\overrightarrow{AC}| = \sqrt{36+4+16} = \sqrt{36} = 3\sqrt{14}$
Therefore, $|\overrightarrow{AC}| = \sqrt{36+4+16} = \sqrt{126} = 3\sqrt{14}$
 $\overrightarrow{AC} = (-4)\overline{j} + (3-6)\overline{k} = 3\sqrt{14}$
Therefore, $|\overrightarrow{AC}| = \sqrt{36+4+16} = \sqrt{126} = \sqrt{126} = \sqrt{162} = \sqrt{102} \cos (-ABC) = \frac{1}{\sqrt{102}} = \cos (-ABC)$
 $= (-ABC) = 2\sqrt{16} = (-1)\overline{16} = 1/2/36^{2}$
Sol. It is given that $|\overrightarrow{A}| = |\overrightarrow{BC}| = |\overrightarrow{AC}| = \sqrt{16} = 3/14^{2}$
Hence, the points A, B and C are coll

T

Sol. Let
$$\ddot{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\dot{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\ddot{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$
Then $\ddot{b} + \ddot{c} = (2\hat{i} + 4\hat{j} - 5\hat{k}) + (\lambda\hat{i} + 2\hat{j} + 3\hat{k})$
 $= (2 + \lambda)\hat{i} + (4 + 2)\hat{j} + (-5 + 3)\hat{k} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$
 \Rightarrow Unit vector along
 $\ddot{b} + \ddot{c} = \frac{\ddot{b} + \ddot{c}}{|\ddot{b} + \ddot{c}|} = \frac{1}{\sqrt{(2 + \lambda)^2 + 36 + 4}} [(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}]$
 $= \frac{2 + \lambda}{\sqrt{(2 + \lambda)^2 + 40}} \hat{i} + \frac{6}{\sqrt{(2 + \lambda)^2 + 40}} \hat{j} - \frac{2\hat{k}}{\sqrt{(2 + \lambda)^2 + 40}}$
Now, we are given that \ddot{a} . unit vector along $\ddot{b} + \ddot{c} = 1$
So, $(\hat{i} + \hat{j} + \hat{k}) \left[\frac{2 + \lambda}{\sqrt{(2 + \lambda)^2 + 40}} \hat{i} + \frac{6}{\sqrt{(2 + \lambda)^2 + 40}} \hat{j} - \frac{2\hat{k}}{\sqrt{(2 + \lambda)^2 + 40}} \right] = 1$
 $\Rightarrow \frac{2 + \lambda}{\sqrt{(2 + \lambda)^2 + 40}} \hat{i} + \frac{6}{\sqrt{(2 + \lambda)^2 + 40}} - \frac{2}{\sqrt{(2 + \lambda)^2 + 40}} = 1$
 $\Rightarrow \frac{2 + \lambda + 6 - 2}{\sqrt{(2 + \lambda)^2 + 40}} = 1 \Rightarrow \lambda + 6 = \sqrt{(2 + \lambda)^2 + 40}$
 $\Rightarrow (\lambda + 6)^2 = (2 + \lambda)^2 + 40$
 $\Rightarrow (\lambda + 6)^2 = (2 + \lambda)^2 + 40$
 $\Rightarrow \lambda^2 + 12\lambda + 36 = \lambda^2 + 4\lambda + 4 + 40 \Rightarrow 8\lambda = 8 \Rightarrow \lambda = 1$
Ex.21 Let $\ddot{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\ddot{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and
 $\ddot{c} \cdot \ddot{d} = 15$.
Sol. Let $\ddot{d} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$
Since vector \ddot{d} is perpendicular to both \ddot{a} and \ddot{b} , and
 $\ddot{c} \cdot \vec{d} = 15$.
Sol. Let $\vec{d} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$
Since vector \vec{d} is perpendicular to both \ddot{a} and \vec{b} , and
 $\ddot{c} \cdot \vec{d} = 15$.
Sol. Let $\vec{d} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$
Since vector \vec{d} is perpendicular to both \ddot{a} and \vec{b} , and
 $\ddot{c} \cdot \vec{d} = 15$.
Sol. Let $\vec{d} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$
Since vector \vec{d} is perpendicular to both \ddot{a} and \vec{b} , and
 $\ddot{c} \cdot \vec{d} = 15$.
Sol. Let $\vec{d} = a_1\hat{i} + a_3\hat{i} + 2\hat{k} = 2\hat{i} = 0$
 $\Rightarrow a_1 + 4a_2 + 2a_3 = 0$ (1)
 $(a_1\hat{i} + a_2\hat{j} + a_3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + 7\hat{k}) = 0$
 $3a_1 - 2a_2 + 4a_3 = 15$ (3)
Solving a_1, a_2 and a_3 from (1), (2) and (3),
we have $a_1 = \frac{160}{3}$, $a_2 = -\frac{5}{3}$ and $a_3 = -\frac{70}{3}$
Thus, the required vector \vec{d} is $\frac{1}{3}(160\hat{i} - 5\hat{j} - 70\hat{k})$.

Ex.22 Show that
$$(a-b) \times (a+b) = 2(a \times b)$$

Sol. Consider $(\bar{a}-\bar{b}) \times (\bar{a}+\bar{b}) = (\bar{a}-\bar{b}) \times \bar{a} + (\bar{a}-\bar{b}) \times \bar{b}$
 $= \bar{a} \times \bar{a} - \bar{b} \times \bar{a} + \bar{a} \times \bar{b} - \bar{b} \times \bar{b}$
 $= 0 + \bar{a} \times \bar{b} + \bar{a} \times \bar{b} - 0 = 2(\bar{a} \times \bar{b})$
Ex.23 Find λ and μ
if $(2\hat{i}+6\hat{j}+27\hat{k}) \times (\hat{i}+\lambda\hat{j}+\mu\hat{k}) = \bar{0}$.
Sol. Given $(2\hat{i}+6\hat{j}+27\hat{k}) \times (\hat{i}+\lambda\hat{j}+\mu\hat{k}) = \bar{0}$
 $\Rightarrow 2\hat{i} \times \hat{i} + 6\hat{j} \times \hat{i} + 27\hat{k} \times \hat{i} + 2\lambda\hat{i} \times j + 6\lambda\hat{j} \times \hat{j} + 27\lambda\hat{k} \times \hat{j}$
 $+ 2\mu\hat{i} \times \hat{k} + 6\mu\hat{j} \times \hat{j} + 27\mu\hat{k} \times \hat{k} = \bar{0}$
 $\Rightarrow 2 \times 0 - 6i \times \hat{j} + 27\hat{k} \times \hat{i} + 2\lambda\hat{i} \times j + 6\lambda \times 0 - 27\lambda\hat{j} \times \hat{k} - 2\mu\hat{k} \times \hat{i}$
 $+ 6\mu\hat{j} \times \hat{k} + 27 \times 0 = \bar{0}$
 $\Rightarrow -6\hat{k} + 27\hat{j} + 2\lambda\hat{k} - 27\lambda\hat{i} - 2\mu\hat{j} + 6\mu\hat{i} = 0$
 $\Rightarrow (6\mu - 27\lambda)\hat{i} + (27 - 2\mu)\hat{j} + (2\lambda - 6)\hat{k} = 0$
 $\Rightarrow \lambda = 3, \mu = \frac{27}{2}$
Hence, $\lambda = 3$ and $\mu = \frac{27}{2}$.

- Ex.24 Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{o}$. What can you conclude about the vectors \vec{a} and \vec{b} ? Sol. Given $\vec{a} \cdot \vec{b} = 0$, we have $|\vec{a}| |\vec{b}| \cos \theta = 0$ Either $|\vec{a}| = 0$, $|\vec{b}| = 0$ or $\theta = 90^{\circ}$ Given $\vec{a} \times \vec{b} = \vec{0}$, we have $|\vec{a}| |\vec{b}| \sin \theta = 0$ Either $|\vec{a}| = 0$, $|\vec{b}| = 0$ or $\theta = 0$ Hence, From (1) and (2) taken together, we have Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$
- **Ex.25** If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$. Is the converse true ? Justify your answer with an example.

Sol. The converse not true. take any two non-zero collinear vectors, say, $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$ Then, $\vec{a} \neq \vec{0}; \vec{b} \neq \vec{0}$ yet $\vec{a} \times \vec{b} = \vec{0}$ $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & -2 & 4 \end{vmatrix}$ $= (-4+4)\hat{i} + (4-4)\hat{j} + (-2+2)\hat{k} = \vec{0}$

EXERCISE – I UNSOLVED PROBLEMS

- **Q.1** If $\vec{a} = 2\hat{i} + \hat{j} \hat{k}$, $\vec{b} = \hat{i} \hat{j} + 2\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$ such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , find the value of λ .
- **Q.2** Find the angles which vector \vec{a} makes with vectors \vec{b} and \vec{c} , where $\vec{a} = 3\hat{i} + 2\hat{j} \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} 3\hat{k}$ and $\vec{c} = 2(\hat{i} \hat{j} + \hat{k})$.
- **Q.3** Find the value of λ for which the vectors $\vec{a} = \lambda \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} 3\hat{k}$ are (i) parallel, and (ii) perpendicular.
- **Q.4** Find the work done by the force $\vec{F} = 2\hat{i} + \hat{j} + 2\hat{k}$ in displacing an object from A(1, 2, -3) to B(3, 1, 2).
- **Q.5** Find the work done by the forces $\hat{i} \hat{j} + 2\hat{k}$ and $2\hat{i} + 3\hat{j} + \hat{k}$ in displacing an object from the origin to the point A(2, 1, 4).
- **Q.6** Find the projection of the vector $\hat{i} + 2\hat{j} + 4\hat{k}$ on the vector $2\hat{i} + 4\hat{j} + \hat{k}$.
- **Q.7** Find the component of the vector $\hat{i} \hat{j} + 2\hat{k}$ in the direction of $2\hat{i} + \hat{j} \hat{k}$.
- **Q.8** Show that the points whose position vectors are $4\hat{i}-3\hat{j}+\hat{k}, 2\hat{i}-4\hat{j}+5\hat{k}$ and $\hat{i}-\hat{j}$ from a right triangle.
- **Q.9** The adjacent sides of a triangle are $2\hat{i} \hat{j} + 4\hat{k}$ and $\hat{i} 2\hat{j} \hat{k}$. Find the area of the triangle.
- **Q.10** Find the area of a parallelogram whose adjacent sides are $\hat{i} + 2\hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} \hat{k}$.
- **Q.11** If A(1, -1, 2), B(2, 3, 1) and C(3, 2, -1) are the vertices of \triangle ABC, find its area using the vector method.
- **Q.12** If $\hat{i} + 2\hat{j} \hat{k}$ and $\hat{i} + \hat{j} 2\hat{k}$ are the two diagonals of a parallelogram, find its area.
- **Q.13** If A(2, -1, 1), B(1, 2, 0), C(3, 2, 2) and D(4, -1, 3) are the vertices of a parallelogram ABCD, find its area.
- **Q.14** If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices of $\triangle ABC$, show that the area of $\triangle ABC$ is $\frac{1}{2} | \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} |$
- **Q.15** Prove that $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$. Interpret the result geometrically.
- **Q.16** Prove that $|\vec{a} \times \vec{b}| = \sqrt{\vec{a}^2 \cdot \vec{b}^2 (\vec{a} \cdot \vec{b})^2}$.
- **Q.17** If $|\vec{a}| = 4$, $|\vec{b}| = 3$ and $|\vec{a} \times \vec{b}| = 8$, find $\vec{a} \cdot \vec{b}$.
- **Q.18** Find a unit vector perpendicular to both the vectors $\hat{i} + 2\hat{j} 3\hat{k}$ and $3\hat{i} \hat{j} + 2\hat{k}$.

- **Q.19** Find a vector of magnitude 5 units in a direction perpendicular to both the vectors $\hat{i} + \hat{j} 2\hat{k}$ and $2\hat{i} \hat{j} + \hat{k}$.
- **Q.20** Prove that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$.
- **Q.21** For any vector \vec{a} , prove that $|\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2$.
- **Q.22** Find a unit vector perpendicular to the plane of $\triangle ABC$ where the position vectors of A, B and C are $2\hat{i} \hat{j} + \hat{k}, \hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} + 3\hat{k}$ respectively.
- **Q.23** Find the angles of $\triangle ABC$ when the vertices are A(1, 2, -1), B(2, -1, 1) and C(1, 1, -2).
- **Q.24** For any vector \vec{r} , prove that $\vec{r} = (\vec{r} \cdot \hat{i})\hat{i} + (\vec{r} \cdot \hat{j})\hat{j} + (\vec{r} \cdot \hat{k})\hat{k}$.
- **Q.25** If \hat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that $\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} \hat{b}|$.
- **Q.26** If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, prove that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with the vectors \vec{a} , \vec{b} and \vec{c} .
- **Q.27** If $\vec{\alpha} = 3\hat{i} \hat{j}$ and $\vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.
- **Q.28** For any two vectors \vec{a} and \vec{b} , prove that $|\vec{a} + \vec{b}|^2 + |\vec{a} \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$.
- **Q.29** If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 7$ and $|\vec{c}| = 5$, find the angle between \vec{a} and \vec{c} .
- **Q.30** If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$ then prove that $2\vec{a} + \vec{b}$ is perpendicular to \vec{b} .

Answers

EXERCISE - 1 (UNSOLVED PROBLEMS) 2. 60°, 90° 3. (i) -1 (ii) 13 4. 13 units 5. 20 units 6. $\frac{2\sqrt{21}}{3}$ 7. $\frac{-1}{\sqrt{6}}$ 9. $\frac{3\sqrt{14}}{2}$ sq units 10. $5\sqrt{2}$ sq units 11. $\frac{\sqrt{107}}{2}$ sq units 12. $\sqrt{11}$ sq units 13. $6\sqrt{2}$ sq units 17. $\pm 4\sqrt{5}$ 18. $\pm \frac{(\hat{i}-11\hat{j}-7\hat{k})}{\sqrt{171}}$ 19. $\pm \frac{5(\hat{i}+5\hat{j}+3\hat{k})}{\sqrt{35}}$ 22. $\pm \frac{3\hat{i}+2\hat{j}-\hat{k}}{\sqrt{14}}$ 23. $\angle A = \cos^{-1}\left(\frac{1}{2\sqrt{7}}\right)$, $\angle B = \cos^{-1}\left(\frac{13}{14}\right)$, $\angle C = \cos^{-1}\left(\frac{1}{2\sqrt{7}}\right)$ 27. $\vec{\beta}_1 = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}$; $\vec{\beta}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}$ 29. 60°

EXERCISE – II BOARD PROBLEMS

- **Q.1** Find λ if $\vec{a} = 4\hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \lambda\hat{i} 2\hat{j} + 2\hat{k}$ are perpendicular to each other.
- **Q.2** Find a unit vector perpendicular to both $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} \hat{k}$.
- **Q.3** Define $\vec{a} \times \vec{b}$ and prove that $|\vec{a} \times \vec{b}| |\vec{a} \times \vec{b}| = (\vec{a} \cdot \vec{b})$ tan θ , where θ is the angle between the vectors \vec{a} and \vec{b} .
- **Q.4** If three vectors \vec{a} , \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
- **Q.5** If $\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = i 2k$ find $|2\vec{b} \times \vec{a}|$.
- **Q.6** Find a vector whose magnitude is 3 units and which is perpendicular to the following two vectors \vec{a} and \vec{b} : $\vec{a} = 3\hat{i} + \hat{j} 4\hat{k}$ and $\vec{b} = 6\hat{i} + 5\hat{j} 2\hat{k}$
- **Q.7** In $\triangle OAB$, $\overrightarrow{OA} = 3\hat{i} + 2\hat{j} k$ and $\overrightarrow{OB} = \hat{i} + 3\hat{j} + k$. Find the area of the triangle.
- **Q.8** Prove that $(\vec{a} \times \vec{b})^2 = |\vec{a}|^2 \cdot |\vec{b}|^2 (\vec{a} \cdot \vec{b})^2$.
- **Q.9** For any two vectors \vec{a} and \vec{b} , show that $(1+|\vec{a}|^2)(1+|\vec{b}|^2)=(1-\vec{a}.\vec{b})^2+|\vec{a}+\vec{b}+(\vec{a}\times\vec{b})|^2$
- **Q.10** If \vec{a} , \vec{b} and \vec{c} are position vectors of points A, B and c, then prove that $(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$ is a vector perpendicular to the plane of $\triangle ABC$.
- **Q.11** Find the value of λ so that the two vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $4\hat{i}+6\hat{j}+\lambda\hat{k}$ are (i) Parallel (ii) Perpendicular to each other
- **Q.12** Find the unit vector perpendicular to the plane ABC where the position vectors of A, B and C are $2\hat{i} \hat{j} + \hat{k}, \hat{i} + \hat{j} + 2k$ and $2\hat{i} + 3\hat{k}$ respectively.
- **Q.13** If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- **Q.14** Show that the points whose position vectors are $\vec{a} = 4\hat{i} 3\hat{j} + \hat{k}$. $\hat{b} = 2\hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - \hat{j}$ form a right angled triangle.
- **Q.15** Let $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = 3j \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 1$.
- **Q.16** Express the vector $\vec{a} = 5\hat{i} 2\hat{j} + 5\hat{k}$ as sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{i} + \hat{k}$ and the other is perpendicular to \vec{b} .
- **Q.17** If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitude, show that they are equally inclined to the vector $(\vec{a} + \vec{b} + \vec{c})$.
- **Q.18** If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$, show that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular to each other.
- **Q.19** Find the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where $\vec{a} = 2\hat{i} \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} 2\hat{k}$
- **Q.20** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

- **Q.21** Find the projection of $\vec{b} + \vec{c}$ on \vec{a} where $\vec{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$
- **Q.22** Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ if $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.
- **Q.23** Find a vector of magnitude 5 units. perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$ where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$
- **Q.24** If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$. $3\hat{i} + 2\hat{j} 3\hat{k}$ and $\hat{i} 6\hat{j} \hat{k}$ are the position vectors of the points A, B, C and D, find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.
- **Q.25** If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, and $|\vec{c}| = 7$, show that angle between \vec{a} and \vec{b} is 60°.
- **Q.26** The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\lambda \hat{i} + 2\hat{j} + 3\hat{k}$ $2\hat{i} + 4\hat{j} + 5\hat{k}$ and is equal to one. Find the value of λ .
- **Q.27** If \vec{p} is a unit vector and $(\vec{x} \vec{p})(\vec{x} + \vec{p}) = 80$, then find $|\vec{x}|$.
- **Q.28** Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$
- **Q.29** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$.
- **Q.30** Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 18$.
- **Q.31** Using vectors, find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
- **Q.32** Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{p} which is

perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$.

Q.32 If $\vec{a} = \vec{i} - \vec{j} + 7\vec{k}$ and $\vec{b} = 5\vec{i} - \vec{j} + \lambda\vec{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors

Answers

EXERCISE – 2 (BOARD PROBLEMS)

1. -1 **2.** $\frac{1}{5\sqrt{3}}(5\hat{i}-\hat{j}+7\hat{k})$ **6.** $2\hat{i}-2\hat{j}+\hat{k}$ **7.** $\frac{3}{2}\sqrt{10}$ sq units **10.** 60 **27.** $6\sqrt{14}$ **11.** (i) -2 (ii) 26 **12.** $\frac{1}{\sqrt{14}}(3\hat{i}+2\hat{j}-\hat{k})$ **15.** $\frac{1}{4}(\hat{i}+\hat{j}+3\hat{k})$ **16.** $6\hat{i}+2\hat{k};-\hat{i}-2\hat{j}+3\hat{k}$ **19.** $\frac{\pi}{2}$ **20.** $\frac{5}{3}\hat{i}+\frac{2}{3}\hat{j}+\frac{2}{3}\hat{k}$ **21.** 2 **22.** $-\frac{21}{2}$ **23.** $-\frac{5}{\sqrt{6}}\hat{i}+\frac{10}{\sqrt{6}}\hat{j}-\frac{5}{\sqrt{6}}\hat{k}$ **24.** 180° **26.** 1 **27.** 9 **28.** $\frac{8}{7}$ **29.** $2\hat{i}-4\hat{j}+4\hat{k}$ **30.** $64\hat{i}-2\hat{j}-28\hat{k}$ **31.** $\frac{1}{2}\sqrt{61}$ **32.** $\vec{p}=64\hat{i}-2\hat{j}-28\hat{k}$