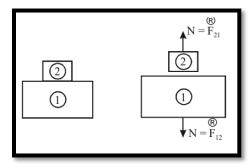
LAWS OF MOTION

NEWTON'S THIRD LAW OF MOTION

THIRD LAW OF MOTION


According to this law, 'Every action has its equal and opposite reaction"

When two bodies A and B exert force on each other, the force (action) of A on B

 $(\overset{
ightharpoonup}{F_{BA}})$ is always equal and opposite to the force of B on A $(\overset{
ightharpoonup}{F_{AB}})$

Thus

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

- 1) This law expresses the nature of force.
- 2) Action and reaction always acts on different bodies

$$\overset{\rightarrow}{\mathbf{F}}_{12} = -\overset{\rightarrow}{\mathbf{F}}_{21}$$

Impulse:

If a force acts on a body for a short duration Δt , then impulse is defined as product of force and its time of action

 $Impulse = Force \times Duration$

$$\vec{\Delta p} = \vec{F} \times \Delta t$$

By Newton's second law

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$$

$$\vec{F}\Delta t = \Delta \vec{p} = \vec{p}_f - \vec{p}_i$$

Thus impulse of force $= \vec{F} \Delta t = \Delta \vec{p} = \vec{p}_f - \vec{p}_i$

- Ex. A man fires the bullets of mass m each with the velocity v with the help of machine gun, if he fires n bullets every sec, the reaction force per second on the man will be
 - $(1) \frac{m}{v} n$

(2) mnv

(3) $\frac{mv}{n}$

(4) $\frac{vn}{m}$

Sol. (2) $F = \frac{dp}{dt}$

$$Fdt = dp = p_2 - p_1$$

$$F \times 1 = mnv - 0$$

$$F = mnv$$

(Total mass of the bullets fired in $1 \sec = mn$) Hence correct answer is (2)