BINOMIAL THEOREM

BINOMIAL THEOREM

BINOMIAL THEOREM FOR POSITIVE INDEX

Such formula by which any power of a binomial expression can be expanded in the form of a series is known as Binomial Theorem. For a positive integer n , the expansion is given by

$$(a+x)^{n} = {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{n-1}x + {}^{n}C_{2}a^{n-2}x^{2} + \ldots + {}^{n}C_{r}a^{n-r}x^{r} + \ldots + {}^{n}C_{n}x^{n} = \sum_{r=0}^{n} {}^{n}C_{r}a^{n-r}x^{r}$$

where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,..., ${}^{n}C_{n}$ are called Binomial co-efficients. Similarly $(a - x)^{n} = {}^{n}C_{0}a^{n} - {}^{n}C_{1}a^{n-1}x + {}^{n}C_{2}a^{n-2}x^{2} - ... + (-1)^{r}{}^{n}C_{r}a^{n-r}x^{r} + ... + (-1)^{n}{}^{n}C_{n}x^{n}$ i.e. $(a - x)^{n} = \sum_{r=0}^{n} (-1)^{r}{}^{n}C_{r}a^{n-r}x^{r}$

Replacing a = 1, we get $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \ldots + {}^nC_rx^r + \ldots + {}^nC_nx^n$ and $(1 - x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 - \ldots + (-1)^r {}^nC_rx^r + \ldots + (-1)^n {}^nC_nx^n$

Observations:

- > There are (n+1) terms in the expansion of $(a + x)^n$.
- Sum of powers of x and a in each term in the expansion of (a +x)ⁿ is constant and equal to n.
- > The general term in the expansion of $(a+x)^n$ is $(r+1)^{th}$ term given as $T_{r+1} = {}^nC_r$ $a^{n-r} x^r$
- > The p^{th} term from the end = $(n p + 2)^{th}$ term from the beginning.
- Coefficient of x^r in expansion of $(a + x)^n$ is ${}^{n}C_r a^{n-r} x^r$.
- $> \quad ^{n}C_{x} = {}^{n}C_{y} \Longrightarrow x = y \text{ or } x + y = n.$
- In the expansion of $(a + x)^n$ and $(a x)^n$, x^r occurs in $(r + 1)^{th}$ term.

CLASS 11

Ex.1 If the coefficients of the second, third and fourth terms in the expansion of

 $(1 + x)^n$ are in A.P., show that n = 7.

Sol. According to the question ${}^{n}C_{1} \cdot {}^{n}C_{2} \cdot {}^{n}C_{3}$ are in A.P.

$$\frac{2n(n-1)}{2} = n + \frac{n(n-1)(n-2)}{6}$$

 $n^2 - 9n + 14 = 0$

$$\Rightarrow$$
 $(n-2)(n-7) = 0$

$$\Rightarrow$$
 n = 2 or 7

Since the symbol ${}^{n}C_{3}$ demands that n should be ≥ 3

n cannot be 2, \therefore n = 7 only.

- (i) last digit
- (ii) last two digit
- (iii) last three digit of 17^{256} .

Sol.
$$17^{256} = 289^{128} = (290 - 1)^{128}$$

$$= {}^{128}C_0(290){}^{128} - {}^{128}C_1(290){}^{127} + \dots + {}^{128}C_{126}(290){}^2 - {}^{128}C_{127}(290) + 1$$

$$= 1000m + {}^{128}C_2(290)^2 - {}^{128}C_1(290) + 1$$

$$= 1000m + \frac{128 \times 127}{2} \times (290)^2 - \frac{128 \times 290}{1} + 1 = 1000m + 683527680 + 1$$

Hence the last digit is 1. Last two digits is 81. Last three digit is 681.

- **Ex.3** If the binomial coefficients of (2r + 4)th, (r 2)th term in the expansion of $(a + bx)^{18}$ are equal find r.
- **Sol.** This is possible only when

either 2r + 3 = r - 3(1)

or
$$2r + 3 + r - 3 = 18$$
(2)

from (1) r = -6 not possible but from (2) r = 6

MATHS

Hence r = 6 is the only solution.

Ex.4 Find the coefficient of

(i)
$$x^7 in \left(ax^2 + \frac{1}{bx}\right)^{11}$$
,

(ii) and
$$x^{-7}$$
 in $\left(ax - \frac{1}{bx^2}\right)^{11}$.

Find the relation between a and b if these coefficients are equal.

Sol. The general term in
$$\left(ax^2 + \frac{1}{bx}\right)^{11} = {}^{11}C_r(ax^2)^{11-r}\left(\frac{1}{bx}\right)^{r}$$

$$= {}^{11}C_{r} \frac{a^{11-r}}{b^{r}} x^{22-3r}$$

If in this term power of x is 7, then $22 - 3r = 7 \Rightarrow r = 5$

$$\therefore \qquad \text{coefficient of } x7 = {}^{11}\text{C}_5 \frac{a^6}{b^5} \qquad \qquad \dots (1)$$

The general term in $\left(ax - \frac{1}{bx^2}\right)^{11} = (-1)^{r} {}^{11}C_r (ax)^{11-r} \left(\frac{1}{bx^2}\right)^r$ $= (-1)^{r} {}^{11}C_r \frac{a^{11-r}}{b^r} x^{11-3r}$

If in this term power of x is –7, then $11 - 3r = -7 \Rightarrow r = 6$

:. coefficient of
$$x^{-7} = (-1)^{6^{-11}} C_6 \frac{a^{11-6}}{b^6} = {}^{11}C_5 \frac{a^5}{b^6}$$

If these two coefficient are equal, then ${}^{11}C_5 \frac{a^6}{b^5} = {}^{11}C_5 \frac{a^5}{b^6}$

$$a^6b^6 = a^5b^5$$

$$\Rightarrow a^5b^5(ab-1) = 0$$

$$\Rightarrow$$
 ab = 1(a \neq 0, b \neq 0)