COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION OF COMPLEX NUMBER

IMAGINARY NUMBERS

Square root of a negative number is called imaginary number. While solving the equations

 $x^2 + 1 = 0$, a quantity $\sqrt{-1}$ is obtaind and is denoted by i (iota) which is imaginary.

Further $\sqrt{-2}$ is an imaginary number and can be written as

$$\sqrt{-2} = \sqrt{2} \times \sqrt{-1} = \sqrt{2}i$$

If a < 0, then $\sqrt{a} = \sqrt{|a|}j$

Integral Powers of i

We have $i = \sqrt{-1}$ so $i^2 = -1$, $i^3 = -i$, $i^4 = 1$

For any $n \in N$, we have

 $i^{4n+1} = i \cdot i^{4n+2} = -1$

 $i^{4n+3} = -i, i^{4n} = 1$

Thus any integral power of i can be expressed as ± 1 or $\pm i$.

In other words . i^{n} $\begin{cases} (-1)^{\frac{n}{2}} \text{ if } n \text{ is even integer} \\ (-i)^{\frac{n-1}{2}} \text{ ; if } n \text{ is odd integer} \end{cases}$

Also $i^{-n} = \frac{1}{i^n}$

Ex.1 Evaluate:

(i)
$$j^{786}$$
 (ii) $(-\sqrt{-1})^{23}$ (iii) $\frac{i^2 + j^3 + j^4 + j^5}{i + i^2 + i^3}$

CLASS 11

Sol. (i)
$$i^{786} = i^{4 \times 196 + 2} = i^2 = -1$$

(ii)
$$(-\sqrt{-1})^{23} = (-1 \times i)^{23} = (-i)^{23} = -(i)^{23} = -(i)^{4 \times 5 + 3} = -i^3 = -(-i) = i$$

(iii)
$$\frac{i^2 + j^3 + j^4 + j^5}{i + j^2 + i^3} = \frac{i^2 \left(1 + i + j^2 + j^3\right)}{i + j^2 + j^3} = \frac{(-1)(1 + i - 1 - i)}{i - 1 - i} = \frac{0}{-1} = 0$$

Note : $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ is true iff at least one of a and b are non-negative. If a < 0 and b < 0, then

$$\sqrt{a} \times \sqrt{b} = \sqrt{-|a|} \times \sqrt{-|b|}$$
$$= i\sqrt{|a|} \times i\sqrt{|b|} = -\sqrt{ab}$$

Complex Numbers

The formal addition, 'a + ib', where a, $b \in R$ and the collection of all such expressions is called the set of complex numbers. For the complex number, z = a + ib, 'a' is called as real part of z and is denoted by Re(z) while 'b' is called as imaginary part of z and is denoted by Im(z).

Set of complex numbers is denoted by C, which includes the set of real numbers R.

i.e., $R \subset C$

A complex number z is said to be purely real if $I_m(z) = 0$ and is said to be purely imaginary if Re(z) = 0. The complex number 0 + 0i = 0 is both purely real and purely imaginary. All purely imaginary numbers except zero are imaginary numbers but an imaginary

number may or may not be purely imaginary.

For e.g., 4 + 3i is imaginary but not purely imaginary.

Equality of Complex numbers

Two complex numbers a + ib and c + id are said to be equal, if and only if, a = c and b = d. i.e., the corresponding real and imaginary parts are equal.

If $a + ib = C_1$ and $c + id = C_2$

then either $C_1 = C_2$ or $C_1 \neq C_2$

CLASS 11

For imaginary numbers, the property of order is not defined because i is neither positive, zero nor negative.

So $C_1 > C_2$ or $C_2 > C_1$ is meaningless till b and d are both equal to zero.

i.e., $C_1 > C_2$ or $C_1 < C_2$ are meaningless if b and d are not equal to zero.

ALGEBRA OF COMPLEX NUMBERS

- (i) Addition : (a + ib) + (c + id) = (a + c) + i (b + d)
- (ii) Subtraction : (a + ib) (c + id) = (a c) + i (b d)
- (iii) Multiplication : $(a + ib) \cdot (c + id) = ac + iad + ibc + i²bd = (ac bd) + i(ad + bc)$
- (iv) Division : $\frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i\frac{(bc-ad)}{c^2+d^2}$

(When at least one of c and d is non-zero)

Conjugate Complex Number

For z = a + ib, its conjugate is defined as z = a - ib. Here the complex conjugate is obtained just by changing sign of i.

Properties of conjugate :

(i)
$$(z) = Z$$

(ii) $z = \overline{Z} = iff z$ is purely real

(iii)
$$z + \overline{Z} = 2\operatorname{Re}(z) \implies \operatorname{Re}(z) = \operatorname{Re}(\overline{z}) = \frac{z+z}{2}$$

(iv)
$$z - \overline{Z} = 2i I_m(z) \implies I_m(z) = \frac{z - \overline{z}}{2i}$$

(v)
$$z = -\overline{Z}$$
 iff z is purely Imaginary

(vi)
$$z_1 \pm z_2 = z_1 \pm z_2$$

$$(vii) \quad z_1 z_2 = z_1 z_2$$

(viii)
$$\left(\frac{\overline{z_1}}{\overline{z_2}}\right) = \frac{\overline{z_1}}{\overline{z_2}}, z_2 \neq 0$$

CLASS 11

MATHS

(ix)
$$\left(\overline{z^n}\right) = (\overline{z})^n$$

(x)
$$z_1\overline{z_2} + \overline{z_1}z_2 = 2\operatorname{Re}\left(\overline{z_1}z_2\right) = 2\operatorname{Re}\left(z_1\overline{z_2}\right)$$

(xi) If $z = f(z_1)$, then $\overline{z} = f(\overline{z}_1)$

Modulus of a Complex Number

The modulus of a complex number z = x + iy is defined as

 $|z| = \sqrt{x^2 + y^2} = \sqrt{\{\text{Re}(z)\}^2 + \{\text{Im}(z)\}^2}$. In other way distance of a complex number z from origin while represented on argand plane is called as modulus of a complex number denoted by mod(z) or |z|, or r.

Here $OP = r = \sqrt{x^2 + y^2}$

|z| is also called absolute value of z.

Note : $|z_1 - z_2|$ is the distance between z_1 and z_2 .

Properties of Modulus :

(i)
$$|z| \ge 0; |z| = 0$$
 iff real and imaginary parts are zero

(ii)
$$|z_1 z_2| = |z_1| |z_2|$$
. In general $|z_1 z_2z_n| = |z_1| |z_2| ... |z_n|$

(iii)
$$\left|\frac{\mathbf{z}_1}{\mathbf{z}_2}\right| = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|}, (\mathbf{z}_2 \neq 0)$$

(iv)
$$|z| = |\overline{z}| = |-z| = |-\overline{z}|$$

(v)
$$\overline{z} = |z|^2$$

(vi) $-|z| \le \operatorname{Re}(z) \le |z| - |z| \le \operatorname{Im}(z) \le |z|$

(vii)
$$|z^n| = |z|^n$$

(viii)
$$|\mathbf{z}_1 + \mathbf{z}_2|^2 = (\mathbf{z}_1 + \mathbf{z}_2)(\overline{\mathbf{z}}_1 + \overline{\mathbf{z}}_2)$$

= $\mathbf{z}_1\overline{\mathbf{z}}_1 + \mathbf{z}_1\overline{\mathbf{z}}_2 + \mathbf{z}_2\overline{\mathbf{z}}_1 + \mathbf{z}_2\overline{\mathbf{z}}_2$

MATHS

$$= |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z}_2)$$

(ix) $|z_1 - z_2|^2 = (z_1 - z_2)(\overline{z}_1 - \overline{z}_2)$
 $= z_1\overline{z}_1 - z_1\overline{z}_2 - z_2\overline{z}_1 + z_2\overline{z}_2$
 $= |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1\overline{z}_2)$
(x) $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$

(xi)
$$|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$$
 where $a, b \in \mathbb{R}$

5