RELATIONS AND FUNCTIONS

CARTESIAN PRODUCT, DOMAIN RANGE

RELATIONS

a R b means 'a is R-related to b' i.e. a is related to b under relation R. If (a, b) \in R; (a, b) is called ordered pair in the sense that a and b can't be interchanged as a \in A and b \in B.

ORDERED PAIR :

It is a pair of objects written in a particular order. Two members are written in a particular order separated by a comma and enclosed in parentheses. Hence in ordered pair (a, b) a is called the first component or the first element or the first co-ordinate and b the second.

Ordered pairs (a, b) and (b, a) are different.

(a, b) = (c, d) iff a = c and b = d

i.e. $(1, 3) = (1, 3); (1, 3) \neq (1, 2) \neq (2, 3) \neq (3, 1)$

CARTESIAN PRODUCT

Cartesian product of two sets $A \times B$:

For any two non empty sets A and B

 $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$

It is a set of all ordered pairs such that in each ordered pair first element belongs to set A and second element belongs to set B.

 $A \times B$ is read as 'A cross B' or 'Product set of A and B'

 $A \times B = \{(a, b) : a \in A \land b \in B\}$

Thus $(a, b) \in A \times B \Leftrightarrow a \in A \text{ and } b \in B$.

 $B \times A = \{(b, a) : b \in B \land a \in A\}$

 $A \times B \neq B \times A$

(not commutative)

 $n(A \times B) = n(A) n(B)$ and $n(P(A \times B)) = 2n(A) n(B)$

 $A = \phi$ and $B = \phi \Leftrightarrow A \times B = \phi$

Cartesian product of n non empty sets A_1, A_2, \dots, A_n is a set of all n tuples (a_1, a_2, \dots, a_n) such that each $a_i \in A_i$, $i = 1, 2, \dots, n$.

$$A_1 \times A_2 \times \dots \times A_n = \prod_{i=1}^n A_i$$

 $A\times A=A^2: R\times R=R^2$ is a set of all points lying in the plane

 $R \times R \times R = R^3$ represents set of all points in 3-D space.

If at least one of A and B is infinite set then $A \times B$ is also infinite set, provided that other is non-empty set.

- **Ex.1** Let $A = \{a, b\}, B = \{c, d\}, C = \{e, f\}$
- Sol. then $n(A \times B \times C) = n(A)$. n(B). n(C) = 8 $A \times B \times C = \{(a, c, e), (a, c, f), (a, d, e), (a, d, f), (b, c, e), (b, c, f), (b, d, e), (b, d, f)\}$
- **Note:** Each element of A × B shall be an ordered pair or 2–tuple Each element of A × B × C shall be an ordered triplet or 3–tuple Each element of $A_1 × A_2 ×A_n$ shall be n–tuple
- **Ex.2** $A_1 \times A_2 \times A_3 \times A_4 = \{(1, 1, 1, 1), (2, 4, 8, 16), (3, 9, 27, 81), \dots\}$. Find A_1, A_2, A_3 and A_4 .
- **Sol.** Each ordered pair $\{x_1, x_2, x_3, x_4\}$ is of the form $\{x, x^2, x^3, x^4\}$

Hence $x_1 \in A_1 \Rightarrow A_1 = \{x : x \in N\} = \{1, 2, 3, 4,\}$ $x_2 \in A_2 \Rightarrow A_2 = \{x^2 : x \in N\} = \{1^2, 2^2, 3^2, 4^2,\}$ $x_3 \in A_3 \Rightarrow A_3 = \{x^3 : x \in N\} = \{1^3, 2^3, 3^3, 4^3,\}$ $x_4 \in A_4 \Rightarrow A_4 = \{x^4 : x \in N\} = \{1^4, 2^4, 3^4, 4^4,\}$

MATHS

Key Results on Cartesian Product

If A, B, C, D are four sets, then.

- 1. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 2. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 3. $A \times (B C) = (A \times B) (A \times C)$
- 4. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$
- 5. If $A \subseteq B$, then $(A \times C) \subseteq (B \times C)$
- 6. If $A \subseteq B$, then $(A \times B) \cap (B \times A) = A^2$
- 7. If $A \subseteq B$, then $A \times A \subseteq (A \times B) \cap (B \times A)$
- 8. If $A \subseteq B$ and $C \subseteq D$, then $(A \times C) \subseteq (B \times D)$
- 9. $A \times B = B \times A \Leftrightarrow A = B$
- 10. $A \times (B' \cup C')' = (A \times B) \cap (A \times C)$
- 11. $A \times (B' \cap C')' = (A \times B) \cup (A \times C)$

If A and B are two non-empty sets having n elements in common then $(A \times B)$ and $(B \times A)$ have n^2 elements in common.

Ex.3 If n(A) = 7, n(B) = 8 and $n(A \cap B) = 4$, then match the following columns.

(i)	$n(A \cup B)$	(a)	56

- (ii) $n(A \times B)$ (b) 16
- (iii) $n((B \times A) \times A)$ (c) 392
- (iv) $n((A \times B) \cap (B \times A))$ (d) 96
- (v) $n((A \times B) \cup (B \times A))$ (e) 11
- **Sol.** (i)–(e); (ii)–(a); (iii)–(c); (iv)–(b); (v)–(d)
- (i) $n(A \cup B) = n(A) + n(B) n(A \cap B) = 7 + 8 4 = 11$
- (ii) $n(A \times B) = n(A) n(B) = 7 \times 8 = 56 = n(B \times A)$
- (iii) $n((B \times A) \times A) = n(B \times A). n(A) = 56 \times 7 = 392$
- (iv) $n((A \times B) \cap (B \times A)) = (n((A \cap B))^2 = 4^2 = 16$

MATHS

- (v) $n((A \times B) \cup (B \times A)) = n(A \times B) + n(B \times A) n(A \times B) \cap (B \times A)$ = 56 + 56 - 16 = 96
- **Ex.4** If $A = \{2, 4\}$ and $B = \{3, 4, 5\}$, then $(A \cap B) \times (A \cup B)$ is
 - $(1) \quad \{(2,2), (3,4), (4,2), (5,4)\}$
 - $(2) \quad \{(2,3), (4,3), (4,5)\}$
 - $(3) \quad \{(2,4), (3,4), (4,4), (4,5)\}$
 - $(4) \quad \{(4,2),(4,3),(4,4),(4,5)\}$

Sol. Answer (4)

$$A \cap B = \{4\} \text{ and } A \cup B = \{2, 3, 4, 5\}$$

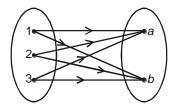
$$(A \cap B) \times (A \cup B) = \{(4, 2), (4, 3), (4, 4), (4, 5)\}$$

Pictorial Representation of Cartesian Product of Two Sets :

Arrow diagram :

Let $A = \{1, 2, 3\}$ B = (a, b)

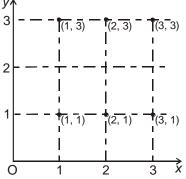
 $A \times B$



Lattice-Diagram :

Axis OX represents elements of A and perpendicular axis OY represents set B. Each dot represents an ordered pair of A \times B.

Let A = (1, 2, 3) B = (1, 3)



RELATIONS

For any two non-empty sets A and B, every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.

 $a R b \subseteq A \times B \ \forall R$

If $(a, b) \in R$, then a R b is read as 'a is related to b'

If $(a, b) \notin R$, then a \cancel{R}' b is read as 'a is not related to b'

Domain and Range of Relation

Domain of R = Dom(R) = Set of first components of all the ordered pairs belonging to R.

Range of R = Set of second components of all the ordered pairs belonging to R.

Co-domain of R = B where R is a relation from A to B

Range of $R \subseteq$ Co-domain of R

 $Dom(R) = \{a \in A : (a, b) \in R \text{ for some } b \in B\}$

Range of $R = \{b \in B : (a, b) \in R \text{ for some } a \in A\}$

If $R = A \times B$, then Dom(R) = A and Range of R = B

Dom (f) = ϕ ; Range of f = ϕ

Ex.5 Let $A = \{1, 3, 4, 5, 7\}$ and $B = \{1, 4, 6, 7\}$ and R be the relation 'is one less than' from A to B, then list the domain, range and co-domain sets of R.

Sol.
$$R = \{(3, 4), (5, 6)\}$$

So, $Dom(R) = \{3, 5\}$

Range of $R = \{4, 6\}$

Co-domain of $R = B = \{1, 4, 6, 7\}$

Clearly Range of $R \subseteq$ co-domain of R.

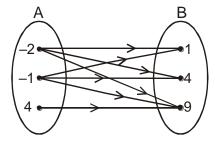
Representation of a Relation

Let $A = \{-2, -1, 4\} B = \{1, 4, 9\}$

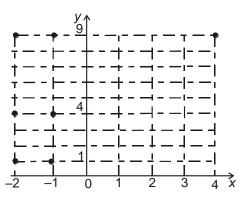
A relation from A to B i.e. a R b is defined as a is less than b.

This can be represented in the following ways.

- **1.** Roster form: $R = \{(-2, 1), (-2, 4), (-2, 9), (-1, 1), (-1, 4), (-1, 9), (4, 9)\}$
- **2.** Set builder notation: $R = \{(a, b): a \in A \text{ and } b \in B, a \text{ is less than } b\}$
- 3. Arrow diagram:



4. Lattice-diagram :



5. Tabular form:

R	1	4	9
-2	1	1	1
-1	1	1	1
4	0	0	1

Note : If $(a, b) \in R$, then we write '1' in the row containing a and column containing b and if $(a, b) \notin R$, we write '0' in the respective row and column.

 $R_3 = \{(1, 1), (2, 4), (3, 9)\}$

Among R_1 , R_2 , R_3 , choose those, that represent a relation from A to B, and represent the relations in set-builder form.

Sol. $R_1 \subseteq A \times B; R_2 \not\subseteq A \times B, R_3 \subseteq A \times B$

Hence R₂ is not a relation as $(5, 8) \notin A \times B$

 $R_1 = \{(a, b) : a \in A, b \in B \text{ and } a + 3 = b\}$

$$R_3 = \{(a, b) : a \in A, b \in B \text{ and } a^2 = b\}$$

Any subset of A \times A is a relation on A. If n(A) = p and n(B) = q then $n(A \times B) = pq$

Total number of subsets of $(A \times B) = 2pq$

Hence 2^{pq} different relations are possible from A to B.