SETS

UNIVERSAL SET

Universal Set

Any set which is the superset of all the sets under consideration is called the universal set

(Ω or S or U).

Choice of universal set is not unique, but once chosen it is fixed for that discussion.

Example:

Let $A = \{a, e, i\}; B = \{i, o, u\}; C = \{e, f\}$

then $U = \{a, e, i, o, u, f\}$

or $U = \{a, e, i, p, o, u, f, g\}$

or U = Set of all English alphabet.

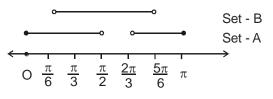
- **Ex.1** Mark T/F against the each statement given below:
 - (a) Every set has at least one proper subset.
 - (b) If A is a finite, non-void set, having n proper subsets and m subsets then n − m∈ N.
 - (c) $A = \{\phi, \{\phi\}\}$ then cardinal number of P(A) is 4.
 - (d) $a \subseteq \{a, \{b\}, \{c\}\}$
 - (e) 'Set of all squares in a plane' is a subset of 'all rectangles in the same plane'.
- **Sol.** (a) F (b) F (c) T (d) F (e) T
 - (a) Void set { }, has no proper subset.
 - (b) $n-m = -1 \notin N$
 - (c) $P(A) = \{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\} \text{ so } n \{P(A)\} = 4.$
 - (d) Since 'a' is not a set hence it cannot be a subset. Every subset is a set in itself.
 - (e) Each square is also a rectangle hence true.

CLASS 11

MATHS

Ex.2 Match the following columns. (a) A = letters of word 'ball'(i) $P(A) \subset P(B)$ B = letters of word 'lab' (b) $A \subset B$ A and B are incomparable (ii) (c) $A = \{x : \cos x > \frac{-1}{2} \text{ and } 0 \le x \le \pi\}$ (iii) A = BB = {x : sinx > $\frac{1}{2}$ and $\frac{\pi}{3} \le x \le \pi$ } (d) $A = \{(x, y) : x^2 + y^2 \le 1, x, y \in R\}$ (iv) $A \supset B$ B = {(x, y) : $0 \le x \le \frac{1}{2}$ and y = 0} Sol. (a)(iii) (b)(i) (c)(ii) (d)(iv)

- (a) A = {a, b, l}; B = {l, a, b} clearly A = B, A and B are comparable P(A) = P(B) so P(A) ⊄ P(B);
 A ∠ B. Hence answer (iii) only.
- (b) If A ⊂ B then P(A) ⊂ P(B); A and B are comparable, A ≠ B, A Ø B. Hence answer (i) only.
- (c) A and B are as shown on number line.



Clearly $P(A) \not\subset P(B)$

A and B are not comparable.

 $A \neq B$ and $A \not\supset B$. Hence answers (ii) only.

(d) A is all points within on a circle of radius 1 and centre (0, 0). B contains only the points lying on x-axis within the circle such that $0 \le x \le$, so clearly $B \subset A$; B $\neq A$, A and B are comparable P(A) \subset P(B). Hence only correct answer is (iv).

Intervals as Subsets of R

Four type of subsets can be defined on R as given below.

Let $a, b \in R$, such that a < b

1. Open Interval

(a, b) or] a, b [= {x : a < x < b}

= Set of all real numbers between a and b, not including a and b both.

2. Closed Interval

 $[a, b] = \{x : a \pounds x \pounds b\}$

= Set of all real numbers between a and b as well as including a and b both.

3. Open-closed Interval (semi closed or semi open interval)

 $(a, b] \text{ or }]a, b] = \{x : a < x \pounds b\}$

= Set of all real numbers between a and b, a not included but b included.

4. Closed-open interval (semi closed or semi open interval)

[a, b) or [a, b[= { $x : a \pounds x < b$ }

= Set of all real numbers between a and b including a but excluding b.

Some More Representations on Number Line

Infinite open interval

x > a a

CLASS 11

