SETS

POWER SETS

Power Set

The set of all subsets of a set A is called power set of A and is denoted by P(A) or 2^{A} .

- $P(A) = \{x : x \subseteq A\}$ $x \in P(A) \Leftrightarrow x \subseteq A$ $\phi \in P(A) \text{ and } A \in P(A)$ Example : $A = \{1, 2, 3\}$ $P(A) = 2^{A} = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $n(A) = 3 \text{ so } n(2^{A}) = 2^{3} = 8$ (i) If A has n elements then its power set P(A) contains 2ⁿ elements. nP(A) = 2ⁿ.
 (ii) ϕ and A both belong to P(A).
- (iii) If $A = \phi$ then $P(A) = \{\phi\}$ is a singleton set.
- (iv) If $A = \{t\}$ then $P(A) \{\phi, \{t\}\}$ is a pair set.
- (v) If cardinal number of set A is n then total number of subsets of $P(A) = 2^{2^n}$ and proper subsets $2^{2^n} = -1$.
- (vi) If $A \subseteq B \Rightarrow P(A) \subseteq P(B)$
- **Ex.1** $A = \{(x, y) : y^2 = x, x \in R\}$ and $B = \{(x, y) : y =, x \in R\}$. Choose the correct option/options among the following.
 - (a) A = B
 - (b) $B \subset A$ and $A \subseteq B$
 - (c) A and B are comparable sets.
 - (d) A and B both are infinite sets.

Sol. (c) and (d)

Set A and Set B include all the points lying on the respective curves below. Clearly $A \neq B$, $B \subset A$, so A and B are comparable; $A \not\subseteq B$ and both are infinite sets as infinite number of points satisfy each.

Sol Methods of selecting r things from n different things is given by

$${}^{n}C_{r} = \frac{n(n-1)(n-2)\dots \text{ uptor terms}}{\underline{r}}$$
, where

$$Lr = 1.2.3r.$$

The number of subsets of A having no element = ${}^{n}C_{0} = 1$ i.e. ϕ

The number of subsets of A having one element = ${}^{n}C_{1}$

The number of subsets of A having two elements = ${}^{n}C_{2}$

The number of subsets of A having n elements = ${}^{n}C_{n}$

Thus total number of subsets of A = ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$

 $= (1+1)^n = 2^n$ (by binomial theorem)