Class-XI

CHEMICAL BONDING AND MOLECULAR STRUCTURE BONDING IN SOME HOMONUCLEAR DIATOMIC MOLECULES

Molecular Orbital Configuration of Some Homo-Nuclear Diatomic Species: omonuclear diatomic molecules or ions have two identical atoms linked together. These are A2 type species.

(i) The hydrogen molecule ion, H_2^+ : This ion has one hydrogen atom and one H+ ion linked together. Each has Is-orbital Using LACO method two Is-orbitals will combine to give two molecular orbitals. $\sigma(1s)$ and $\sigma^*(1s)$, the only electron will be accommodated on σ 1s. Thus,

bond order for
$$H_2^+ = \frac{1}{2}(1-0) = \frac{1}{2}$$

H2 ion can exist but it is unstable. *It* is paramagnetic in nature. The bond length is 104 pm. Its bond dissociation energy is 269 kJ mol⁻¹.

(ii) The hydrogen molecule, H₂: It is formed from 1s1atomic orbitals of two atoms. The atomic orbitals (1s¹) will combine to form two molecular orbitals σ (1s) and σ *(ls). Two electrons are accommodated on σ (1s) and σ *(1s) remains vacant. Thus,

bond order for
$$H_2 = \frac{1}{2} (2 - 0) = 1$$

It is stable and diamagnetic in nature. It has single covalent bond. Its bond dissociation energy is 438 kJ mol⁻¹. The bond length is74 pm.

(iii) The hydrogen molecule ion, He_2^+ : It is formed by linking hydrogen atom with hydrogen ion, H-. Both have 1s-orbitals. These will combine to form two molecular orbitals σ (1s) and $\sigma^*(1s)$. These available electrons are accommodated as $\sigma(1s)^2$ and $\sigma^*(1s)^1$. Thus,

bond order for
$$He_2^+ = \frac{1}{2}(2-1) = \frac{1}{2}$$

Class-XI

The value of bond order indicates that He2+ can exist but is unstable. The bond dissociation energy is 242 kJ mol⁻¹. It is paramagnetic in nature. Both H2- and He_2^+ have same number of electrons in the antibonding orbitals. Both have same stability, similar bond dissociation energy and similar bond lengths.

(iv) Helium molecule, He_2^+ : It is formed by linking two helium atoms. Both have Is-orbitals. These will combine to form two molecular orbitals $\sigma(1s)$ and $\sigma^*(1s)$. Four available electrons are accommodated as $\sigma(1s)^2$ and $\sigma^*(1s)^1$.

bond order for
$$He_2^+ = \frac{1}{2}(2-1) = \frac{1}{2}$$

The value of bond order indicates that He2+ can exist but is unstable. The bond dissociation energy is 242 kJ mol⁻¹. It is paramagnetic in nature. Both H2- and He2+ have same number of electrons in the antibonding orbitals. Both have same stability, similar bond dissociation energy and similar bond lengths.

(v) Helium molecule, He₂: The electronic configuration of helium atom is $1s^2$. Each helium atom contains 2 electrons, therefore, in He₂ molecule there would be 4 electrons. These electrons will be accommodated in σ 1sand σ *1s molecular orbitals leading to electronic configuration:

He₂: $(\sigma 1s)^2 (\sigma^* 1s)^2$ Bond order of He₂ is $\frac{1}{2}(2-2) = 0$

He₂ molecule is therefore unstable and does not exist.

Similarly, it can be shown that Be₂ molecule $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^* 2s)^2 (\sigma^* 2s)^2$ also does not exist.

(vi) Lithium molecule, (Li₂): The electronic configuration of lithium is $1s^2$, $2s^1$. There are six electrons in Li₂. The electronic configuration of Li₂ molecule, therefore, is Li₂ : $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2$

The above configuration is also written as $KK(\sigma 2s)^2$ where KK represents the closed K shell structure $(\sigma 1s)^2 (\sigma^* 1s)^2$.

From the electronic configuration of Li_2 molecule it is clear that there are four electrons present in bonding molecular orbitals and two electrons present in antibonding molecular orbitals. Its bond order, therefore, is $\frac{1}{2}(4-2) = 1$.

It means that Li₂ molecule is stable and since it has no unpaired electrons it should be diamagnetic. Indeed, diamagnetic Li₂ molecules are known to exist in the vapour phase.

Class-XI

(vii) Carbon molecule (C₂): The electronic configuration of carbon is 1s² 2s² 2p². There are twelve electrons in C₂. The electronic configuration of C₂ molecule, therefore, is

$$C_{2}: (\sigma 1s)^{2} (\sigma^{*} 1s)^{2} (\sigma^{*} 2s)^{2} (\pi 2p_{x}^{2} = \pi 2p_{y}^{2})$$

or $KK(\sigma 2s)^{2} (\sigma^{*} 2s)^{2} (\pi 2p_{x}^{2} = \pi 2p_{y}^{2})$

The bond order of C_2 is $\frac{1}{2}(8-4) = 2$ and C_2 should be diamagnetic. Diamagnetic C_2 molecules have indeed been detected in vapour phase. It is important to note that double bond in C_2 consists of both pi bonds because of the presence of four electrons in two pi molecular orbitals. In most of the other molecules a double bond is made up of a sigma bond and a pi bond. In a similar fashion the bonding in N_2 molecule can be discussed.