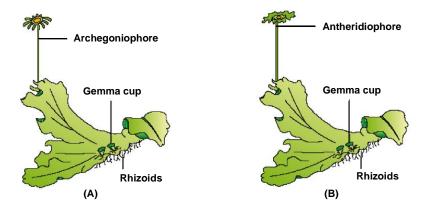
PLANT KINGDOM

BRYOPHYTES


BRYOPHYTA

- The term "Bryophyta" was proposed by "Robert Braun".
- The study of Bryophytes is known as **Bryology**.
- Hedwig is considered to be the father of Bryology. But according to some scientist it is believed that **Cavers** is the father of Bryology.
- Father of Indian Bryology is **Prof. Shiv Ram Kashyap**.

GENERAL FEATURES

- Bryophytes are the **first land plant**.
- It is believed that, they **originated from aquatic plant** and they come on land through water. Because some bryophytes have features similar to **aquatic** plants (eg. presence of **air canals**)
- Bryophytes are known as **amphibians** of the plant kingdom, because they **live in soil** but **need** water to complete their life cycle during sexual reproduction.
- Bryophytes are **not** considered as the successful land plants because **vascular tissue** is absent and they need water for fertilization.
- Due to the absence of vascular tissue bryophytes can not grow very tall.
- The process of water conduction in bryophytes takes place with the help of parenchyma or Hardom tissue (Sphagnum)
- Parenchyma is a living tissue, while **Hadrom is dead**
- The plant body is dominantly **haploid**, more differentiated than algae i.e. **Multicellular**, **thalloid**, **parenchymatous**.
- Lower bryophytes thalloid, higher are branched (prostate or erect) with stem or leaf like structure.
- Roots are absent in bryophytes (Rhizoids unicelled / multicelled present).
- Stem and leaves of higher bryophytes are functionally similar to the stem and leaves of higher plants.
- Bryophytes are **sciophytes**, i.e., bryophytes prefer to grow in **moist (wet)** and **shady** places.

• Vegetative reproduction is quite common through fragmentation, tubers, gemmae (inside gemma cup), buds, adventitious branches etc.

(i) Body form:

- The plant body of bryophytes is more differentiated than that of algae.
- It is thallus-like (liverworts) and prostrate or erect (Mosses) and attached to the substratum by unicellular and unbranched rhizoids (Liverworts) or multicellular and branched rhizoids (Mosses).
- They lack true roots, stem or leaves. They may possess root-like (rhizoids), leaf-like (Phylloid) or stem-like (cauloid) structures.
- Thallus is multicellular, thick and **dichotomously branched**.
- The main plant body of the bryophyte is haploid. It produces gametes, hence is called a gametophyte.

CLASS XI

BIOLOGY

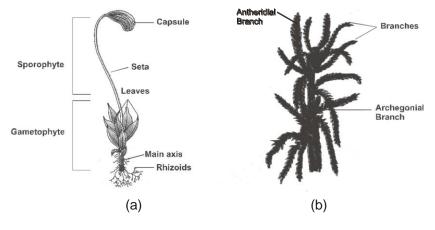


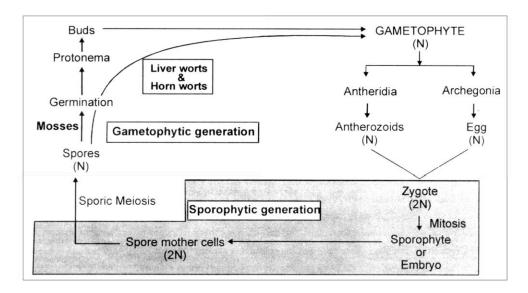
Fig. (a) Funaria (b) Sphagnum (TB)

(i) Vascular tissues (xylem and phloem) are absent in both gametophytic and sporophytic phases. The conduction takes place through specialized parenchyma.

(ii) Reproduction:

(a) Asexual reproduction -

Vegetative propagation takes place in **liverworts by fragmentation, and gemmae** while in **mosses by fragmentation and budding in secondary protonema.**


- (b) Sexual reproduction Oogamous type
- Sex organs are multicellular and surrounded by single layered sterile jacket.
- Male sex organ is called antheridium which is globular or club shaped and forms biflagellated antherozoids or sperms (motile male gamete).
- Flask shaped female sex organ is called archegonium that consists of a swollen venter and a tubular neck.
- Neck is composed of **6 vertical rows of cells** and encloses **4–10 neck canal cells** while venter has **venter canal cell** and a **single egg cell or oosphere (nonmotile female gamete)**.
- Water is essential for fertilization. Archegonia secretes mucilage rich in potassium salts / proteins/sucrose for attracting antherozoids in water.
- Fertilization is internal and takes place by **zoodiogamy**. Diploid zygote formed in the venter by the fusion of one antherozoid with egg cell.
- After fertilization zygote immediately divides mitotically and form multicellular embryo.

- Embryo gives rise to multicellular sporogonium or sporophyte. The latter differentiates into foot, seta and capsule. Sporophyte is completely (e.g. *Riccia*) or partially (e.g. *Funaria*) parasite on gametophyte.
- Some cells of the sporophyte capsule called as Spore mother cells or sporocytes undergo sporic meiosis and form haploid meiospores which are alike or homosporous.
- On germination, spore forms new gametophytic plant either directly (e.g. liverworts and hornworts) or indirect by juvenile filamentous, green, multicellular protonema stage (e.g. moss).

LIFE CYCLE OF BRYOPHYTES

- (1) The plant in bryophytes is **gametophyte**. It is **haploid**.
- (2) Sex organs are formed on gametophyte.
- (3) Sex organs are **multicellular** and **jacketed** in bryophytes.
- (4) Male sex organs are called as antheridium and female sex organs are called as archegonium (Ist Archegoniate plant)
- (5) The male gametes of bryophytes are **motile**. These motile male gametes are called as **antherozoids**.

Antherozoides are **comma shaped** and **biflagellate**. Female gamete is called **egg**.

In Bryophyta, **fertilization** is done by **zoodiogamy** i.e. male gamete reaches the female gametes (for **which water is essential)** and fertilizes it.

- As a result of fertilization, a **diploid zygote** is formed.
- The zygote initiates the **sporophytic** generation. Sporophytic generation is a **diploid** stage.
- **Zygote** develops **inside archegonia** and divides by **mitosis** to produce **embryo** (so these are considered as **first embryophytes**).
- The **embryo** develops further into a sporophyte **which is parasitic over the gametophyte** (may be **partial parasite** as in **mosses**).
- The sprophyte of bryophytes is also called **sporogonium**, it is composed of three parts viz. capsule, seta and foot.
- It produces **meiospores** or **haploid spores** inside the **capsule** part (after **meiosis** in spore mother cells), while attached to the gametophyte.
- All bryophytes produce only **one type** of spores (**Homosporous**).

DEVELOPMENT OF SPOROPHYTE

- During the development first division is **transverse** in **zygote** and second division is **vertical**.
- Third division is also **vertical** but at **right angle to second** division, therefore an **eight celled** embryo is formed.
- Now a **periclinal** division takes place in **eight** celled embryo. as a result of it a **16 celled** embryo is formed.
- Now these **sixteen cells** are arranged in two layers.

Outer 8 cells-Called AmphitheciumInner 8 cells-Called Endothecium

- Now cells of **endothecium** divided and form many cells which are known as **sporogenous cells**.
- Some sporogenous cells become sterile and called nurse cells (2n).

Remaining sporogenous cells function as spore mother cells.

- Now **meiosis** takes place in **spore mother cells**, result of it **haploid spores** are formed.
- Nurse cells provide nutrition to spore mother cells and spore.
- The germination of spores is **direct** or **indirect**.
- In **Liverworts** & **Hornworts** the germination of spore is **direct** i.e. each spore forms a gametophyte after germination i.e. each spore forms one **thallus**.

CLASS XI

BIOLOGY

The germination of spores in **Mosses** is **indirect**. i.e. a **multicellular filament** is formed after the germination of spore. This filament is known as **protonema**.

- Now **buds** are formed on every cells of protonema. Each bud develops into a gametophyte plant.
- Indirect germination is **best** for survival.
- Mosses are **gregarious** in nature because they appear in **group**.

POINT TO BE REMEMBER

- Sexual reproduction in bryophytes is **oogamous** type and life cycle is **haplo-diplontic** type.
- In Bryophyta the **sporophyte is depend on gametophyte**. (May be **completely** or **partially**) This is a **unique character** of broyphyta.

Classification of Bryophyta:

Bryophyte sis divided into three classes

1. Hepaticopsida2. Anthocerotopsida3. Bryopsida or Musci