NOMENCLATURE OF ORGANIC COMPOUNDS •

HISTORY AND INTRODUCTION

Nicholas Lemrey, in 1675 had divided chemical substance into 3 parts.

- (i) Mineral substance : which are obtained from minerals. eg. gold, silver, iron etc.
- (ii) Vegetable substance : which are obtained from vegetables . e.g. sugar, citric acid etc.
- (iii) Animal substance : which are obtained from animals. eg. albumin, gilatin etc.
- After some time when many of the chemical substance were discovered, it was found that some of them can be obtained from both vegetables and animals. So this classification was failed. So chemical substance were then divided into two parts :
- (i) **Organic compounds** : which are obtained from living organism.
- (ii) **Inorganic compounds** : compounds which are obtained from any other sources except living organisms.

VFT (Vital force Theory)

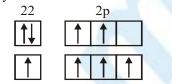
- Berzilius in 1815 suggested that there is a mysterious force in living organisms which was named as Vital Force and said that organic compounds cannot be synthesized in lab. Before this any organic compound could not be synthesized in lab.
- In 1828 Wholar (German Scientist) synthesized an organic compound in lab which was urea.
- Urea was synthesized in lab by heating of Ammonium cyanate (NH_4CNO). So VFT was failed.

 $\begin{array}{c} \Delta \\ NH_4CNO \xrightarrow{\Delta} NH_2 - C - NH_2 \\ H \\ O \\ Ammonium \\ Cyanate \end{array}$

Kekules's Principle

- Carbon has four valencies.
- Carbon has a property of catenation. It can make large chain with addition of other carbons.
- A carbon atom can share, 2, 4 or 6 electrons with other carbons & can form single, double or triple bond.
- For a carbon atom, it is not possible to make more than 3 bonds with adjacent carbon atom because a carbon atom complete its octet from overlapping which consists directional property.

SOME IMPORTANT DEFINITIONS


- (1) Catenation : The property of atoms of an element to link with one another forming chains of identical atoms is called catenation.
- (2) Homologous series : Homologous series may be defined as
 - (a) series of similarly constituted compounds in which the members possess the same functional group.
 - (b) have similar chemical characteristics and
 - (c) have a regular gradation in their physical properties.
 - (d) The two consecutive members differ in their molecular formula by CH_2 .
- (3) **Isomerism**: The name was given by Berzilius. The organic compounds having the some molecular formula and molecular weight but different properties (chemical and physical) and the phenomenon is called isomerism. Isomerism is actually permutation and combination of arrangement of atoms in different style either structurally or 3 –dimensionally to form molecules by the nature.

CHARACTERISTICS OF C-ATOM

(a) Tetra Valency : Atomic number of carbon atom is 6 and it have four valency electrons so C -Atom is tetravalent. It is explained by promotion rule.
 22 2p
 2p

First excited state (here covalency of carbon is 4)

Available for bond formation

=C

(b) Tendency to form multiple bonds : Carbon atom forms following type of bonds, such as

$$-\mathbf{C}-\mathbf{C}-\mathbf{C}$$
,

- (c) Tetrahedral shape : The four covalent bond are directed towards the four corners of a regular tetrahedron Bond angle 109°28' or 109.5'
- (d) Catenation : Self linking property of C-atom is known as catenation. It is responsible for the variety and large number of organic compounds. It may also give rise to open chain and closed chain nature of compounds. Bond energy for catenation of C is maximum. Bond energy in Kcal : C-C Si-Si N-N P-P

 $-C \equiv C - .$

in Kcal : C-C Si-Si N-N P-P 85 54 39 50

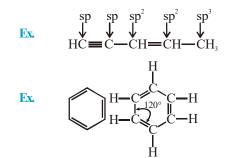
(e) **Hybridisation**: The orbitals of different shape but almost of equal energies blend up to give the same number of new orbitals of another shape and of identical energies.

Structure	σ&πbonds	Hybridisation	Bond angle	Shape
-C-	4,0	sp ³	109°28'	Tetrahedral
-C =	3,1	sp ²	120°	Planar (Trigonal)
$-C=$ $-C\equiv$ $=C=$	2, 2 2, 2	sp sp	180° 180°	Linear Linear

 σ - (sigma) bonds : The molecular orbital formed by the overlapping of two-s atomic orbitals or one s and one p atomic orbitals or co-axial overlapping of p-orbitals is called a σ bond.

or

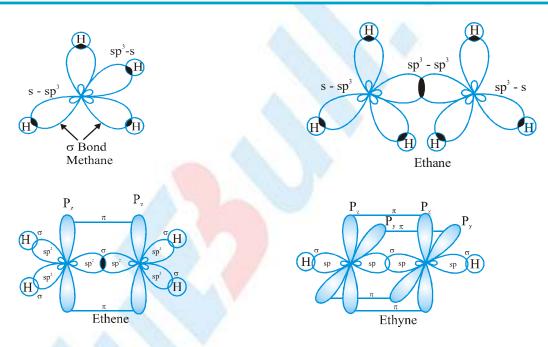
or


ETOOS KEY POINTS

- (i) Overlapping of hybrid orbitals also give σ bonds. σ bonds are stronger, as they are resulted from the effective axial overlapping.
- (ii) More the directional character (p) in covalent bond more is the strength of the bond.

 sp^3 - $sp^3 > sp^3$ - $sp^2 > sp^2$ - $sp^2 > sp$ - sp

 π (Pi) bonds : π bond is formed by the lateral overlapping of two p-atomic orbitals. It is weaker than σ bond, as there is only partial overlapping.

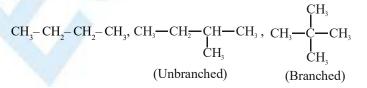


Flat hexagonal structural due to sp² hybridised

C-atom in benzene

EDUBULL KEY POINTS

- (i) π electrons are mobile hence π bond is more reactive. π bond is formed by the collateral overlapping of sp² orbitals.
- (ii) sp^2 hybridised orbitals overlap with each other and with s orbitals of six H-atoms forming C–C and C–H σ bonds.
- (iii) Six 2p unhybridised orbitals of 6 C-atom in benzene form 3π bonds by lateral overlapping with each other. These six π electrons are free to move over all the six carbon atoms. Since delocalised electrons have lower energy than localised.
- (iv) The relative sized of hybrid orbital follows the order
- $sp^3 > sp^2 > sp$ $sp > sp^2 > sp^3$
- (v) The electronegativity of hybrid orbitals follows the order


(Orbital diagram of methane, ethane, ethene and ethyne)

CLASSIFICATION OF ORGANIC COMPOUNDS

Aliphatic or Open chain compounds

Those compounds in which first & last carbon are not connected with each other. Branched or unbranched chains are possible in these compounds.

For example :

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

- Saturated Hydrocarbons
 - (a) In such type, adjacent carbon are attached with single bonds.
 - Example : $CH_3 CH_2 CH_3$
 - (b) General formula of these compounds are $C_n H_{2n+2}$

(c) These are also called as paraffins (Parum + Affins i.e. little reactivity) because these are less reactive due to absence of π -bonds.

Unsaturated Hydrocarbons

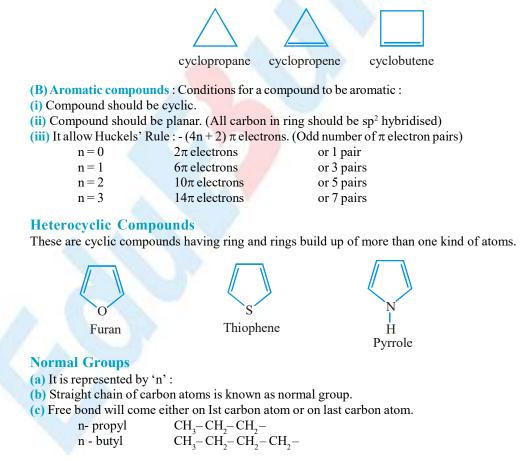
(a) There will be a double bond or a triple bond between any two carbon atoms,

 $CH_2 = CH - CH_3$ Propene

 $CH \equiv C - CH_3$ Propyne

- (b) General formula is $C_n H_{2n}$ or $C_n H_{2n-2}$
- (c) These are also called as olefins because they reacts with halogens to form oily substances olefins (Oleum + fines i.e., Oil forming).
- (d) Due to presence of π bonds these are more reactive.

Closed chain compounds

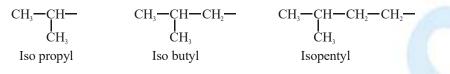

In these compounds first & last carbon are attached with each other.

Example :
$$CH_2$$
 CH₂ cyclopropane.

Homocyclic compounds

These are the compounds in which the complete ring is formed by carbon atoms only. These are also of two types (A) Alicyclic compounds : These are the compounds having the properties like aliphatic compounds.

These may be saturated or unsaturated like aliphatic compounds.



Iso group

(a) It is represented by following structure

CH₃—CH— I CH₃

(b) When methyl groups are attached to the second last carbon atom, group is named as iso.

• Neo group

(a) When two methyl group are attached to second last carbon atom group is named neo group.(b) It is represent by following structure :

for example
$$CH_3 - CH_3$$

 $H_3 - C - CH_2$ Neo pentyl
 CH_3

• Secondary group

(a) When two alkyl groups attached to the same carbon atom, group is named as secondary.

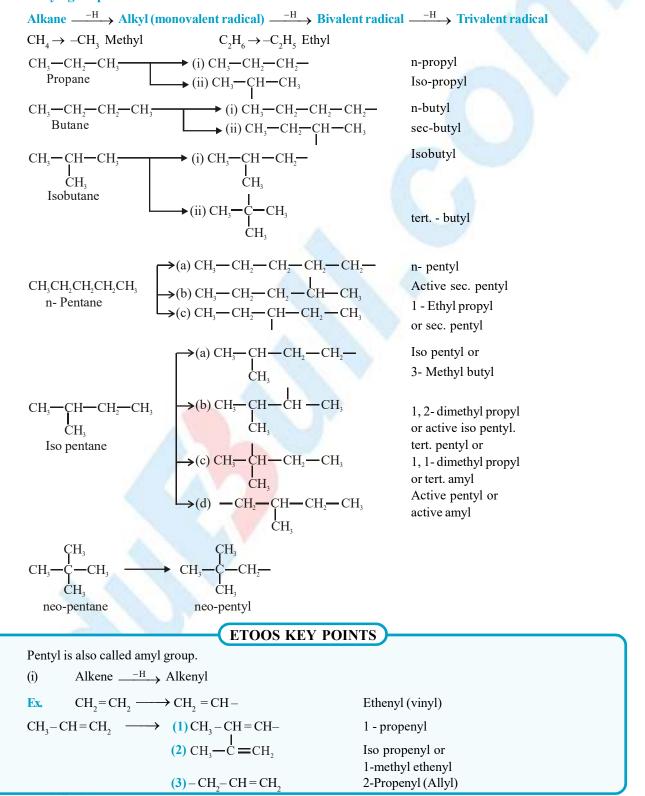
Ex.
$$CH_3$$
- CH_2 - $CH_ CH_3$ - CH_2 - CH_2 - CH_-
 CH_3
Secondary butyl Active Secondary pentyl

(b) It is represented by following structure.

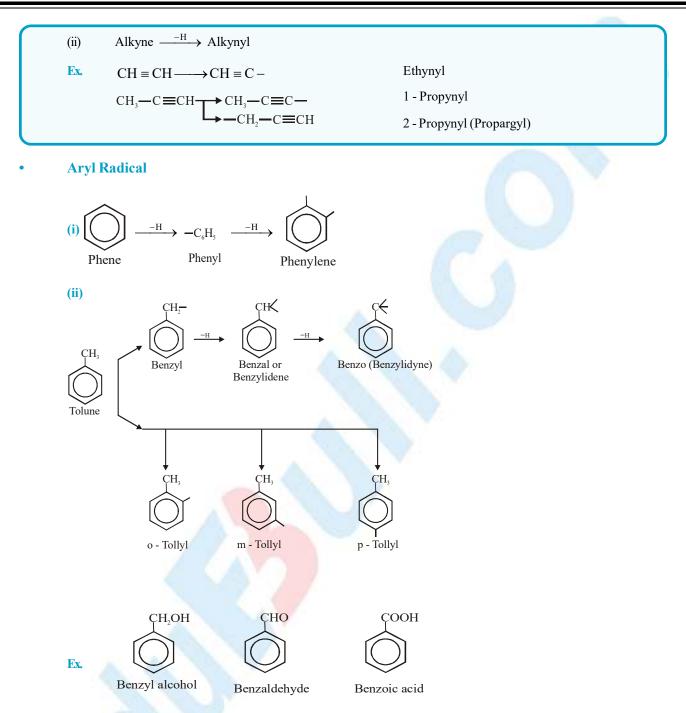
$$CH_3 - CH_2 - CH - CH_3$$

• Tertiary group

(a) When three alkyl groups (similar or dissimilar) are attached to the same carbon atom, group is name as tertiary.


(b) It is represented by following structure :

GROUPS


When a hydrogen is removed from saturated hydrocarbon then alkyl group is formed. It is represented by R & its general formula is C_nH_{2n+1} . A bond is vacant on alkyl group, on which any functional group may come.

Alkyl groups

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

HOMOLOGOUS SERIES

The organic compounds which are structurally similar having same functional groups, combinedly gives a series known as homologous series and the members as **homologues**. The homologous series is characterised by :

- (i) The two adjacent members are differ by $a CH_2 group$ or 14 atomic mass unit.
- (ii) All the members of a series have same general formula, general methods of preparation and similar chemical properties due to same functional group.
- (iii) The homologues shows difference in physical properties due to change in molecular mass and structural arrangement of molecule.

	Some standard Homologous Series Are			
S.No.	Name of Series	General Formula	I-homologue	II-homologue
1	Alkane	$C_{n}H_{2n+2}$	CH ₄	CH ₃ CH ₃
2	Alkene	$C_n H_{2n}$	CH ₂ =CH ₂	$CH_2 = CH - CH_3$
3	Alkyne	$C_n H_{2n-2}$	HC≡CH	$HC \equiv C - CH_3$
4	Halo alkane	$C_nH_{2n+1}X$	CH ₃ -X	CH ₃ -CH ₂ -X
5	Alcohol	$C_nH_{2n+2}O$	CH ₃ –OH	CH ₃ -CH ₂ -OH
6	Ether	$C_nH_{2n+2}O$	$CH_3 - O - CH_3$	$CH_3 - O - CH_2 - CH_3$
7	Aldehyde	$C_nH_{2n}O$	H–CHO	CH ₃ -CHO
8	Ketone	$C_{n}H_{2n}O$		CH ₃ -C-CH ₂ -CH ₃ U
9	Carboxylic acid	$C_n H_{2n} O_2$	H-COOH	CH ₃ -COOH
10	Ester	$C_n H_{2n} O_2$	Н-С-О-СН ₃	H-C-O-CH ₂ CH ₃
				& CH ₃ —C—O—CH ₃ II O
11	Amide	C _n H _{2n+1} NO	H-CONH ₂	CH ₃ -CONH ₂
12	Nitro alkane	C _n H _{2n+1} NO ₂	CH ₃ -N	CH3-CH2-N O
13	Amine	$C_nH_{2n+3}N$	CH ₃ -NH ₂	CH ₃ CH ₂ NH ₂

Some standard Homologous Series Are

NOMENCLATURE OF ORGANIC COMPOUND

Mainly three system are adopted for naming of an organic compound :

- (a) Common Name or Trivial Name System
- (b) Derived Name System
- (c) IUPAC name of Geneva name System

Some Common Names Based and Source

S.No.	Compound	Common Name	Source
1	CH ₄	Marsh gas (Free damp)	Marshy places
2	CH ₃ OH	Wood spirit (Carbinol)	Destructive distillation of wood
3	CH ₃ CH ₂ OH	Grain alcohol	Grain
4	NH ₂ -C-NH ₂	Urea (Carbamide)	Urine
5	НСООН	Formic acid	Formica (Red ants)
6	CH ₃ COOH	Acetic acid	Acetum (Vinegar)
7	HOOC-COOH	Oxalic acid	Oxalis plant
8	СН ₃ —СН—СООН И ОН	Lactic acid	Lactum (Milk)
9	CH ₃ CH ₂ CH ₂ COOH	Butyric acid	Butter

NOMENCLATURE OF ORGANIC COMPOUND

10	НО—СН—СООН НО—СН—СООН	Tartaric acid	Tamarind
11	НО—СН—СООН СН ₂ —СООН	Malic acid	Malum (Apple)
12	СН ₂ —СООН НО—С—СООН СН ₂ —СООН	Citric acid	Citron (Lemon)

Some Frequently Used Common Names (To be Remember)

S.No.	Common Name	Structure Formula
1	Isooctane	$CH_{3} - CH - CH_{2} - CH_{3} - CH_{3}$ $CH_{3} - CH_{2} - CH_{3}$ $CH_{3} - CH_{3}$ $CH_{3} - CH_{3}$
2	Triptane	$CH_{3} - CH - CH - CH_{3}$ $I - CH_{3} - CH_{3}$ $CH_{3} - CH_{3}$ $CH_{3} - CH_{3}$
3	Ethylene	$H_2C = CH_2$
4	Acetylene	HC≡CH
5	Allylene	$HC \equiv C - CH_3$
6	Crotonylene	$CH_3 - C = C - CH_3$
7	Allene	CH ₂ =C=CH ₂
8	Ketene	CH ₂ =C=O
9	Acetone or Dimethyl Ketone	CH ₃ —C—CH ₃ O
10	Pivaldehyde	CH ₃ CH ₃ -C-CHO CH ₃
11	Chloral	Cl ₃ C–CHO
12	Acrolein or Acryl aldehyde	CH ₂ =CH-CHO
13	Acetophenone or Methyl phenyl Ketone	$CH_3 - C - O$
14	Benzophenone or Diphenyl Ketone	$\langle O \rangle - c - \langle O \rangle$
15	Pinacol	$CH_{3}CH_{3}CH_{3}$ $CH_{3}-C-C-C-CH_{3}$ H OH OH
16	Pinacolone	$CH_{3} - C - C - CH_{3}$ $H - CH_{3}$ $O - CH_{3}$

17	Mesityl oxide (Dimer of acetone)	$\begin{array}{c} CH_3 - C = CH - C - CH_3 \\ I \\ CH_3 \\ O \end{array}$
18	Phorone (Trimer of acetone)	$CH_{3} - C = CH - C - CH = C - CH_{3}$ $I \qquad I \qquad I$ $CH_{3} \qquad O \qquad CH_{3}$
19	Oxalic acid	HOOC-COOH
20	Malonic acid	HOOC-CH ₂ -COOH
21	Succinic acid	HOOC-(CH,),-COOH
22	Gluteric acid	HOOC-(CH ₂) ₃ -COOH
23	Adipic acid	HOOC-(CH,) ₄ -COOH
24	Pimelic acid	HOOC-(CH,),-COOH
25	Maleic acid	H-C-COOH H-C-COOH (cis)
26	Fumaric acid	H-C-COOH HOOC-C-H (trans)
27	Cyanic acid	$HO - C \equiv N$
28	Isocyanic acid (Tautomer of cyanic acid)	O=C=NH
29	Isourea (Tautomer of urea)	$H_2 N - C = NH$
30	Chloroform (Anaesthetic agent)	CHCl
31	Chloropicrin (Nitro Chloroform)	Cl ₃ C–NO ₂
32	Chloretone	$CCl_3 \\ CH_3 - C - CH_3 \\ OH$
22	(Chloroform + acetone)	
33	Pyrene (Fire - extinguisher)	CCl ₄
34	Westrosol or Triclene	Cl = C < Cl
35	Westron	Cl CH - CH Cl Cl
36	Tetraclene or Perclene	Cl C
37	Isoprene	$CH_2 = C - CH = CH_2$ CH_3
38	Chloropene (Monomer of Neoprene Polymer)	$CH_2 = C - CH = CH_2$ C1
39	AAE (Aceto acetic ester)	$CH_{3} - C - CH_{2} - C - OC_{2}H_{5}$
100	or EAA (Ethyl aceto acetate)	
40	Acrylic acid	CH ₂ =CH-COOH
41	Crotonic acid	CH ₃ -CH=CH-COOH

NOMENCLATURE OF ORGANIC COMPOUND

42	Cinnamic acid	О-сн=сн-соон
43	Glycol	СН ₂ —ОН I CH ₂ —ОН
44	Glycerol	$\begin{array}{c} CH_2 - OH \\ I \\ CH - OH \\ I \\ CH_2 - OH \end{array}$
45	Phosgene	
	or Carbonyl chloride	0
46	Glyceraldehyde	СН ₂ —ОН I CH —ОН I CHO
47	Glyceric acid	СН ₂ —ОН СН —ОН I СООН
48	Glyoxal	CHO I CHO
49	Glycine	H ₂ N–CH ₂ –COOH
50	α-Alanine	H ₂ N-CH-COOH CH ₃
51	Tilden reagent	Cl-N=O
52	Grignard reagent	R–MgX
53	Frankland reagent	R–Zn–R
54	Hinsberg reagent (used in N-compounds)	SO2-CI
55	Mustard Gas (Explosive used in I-world war)	ClCH ₂ CH ₂ CH ₂ CH ₂ Cl
56	Lewisite (Explosive used in II-world war)	Cl–CH=CH–AsCl ₂
57	Semicarbazide	H ₂ N—NH—C—NH ₂
58	Schiff's Base of Anil	R-CH=N-R
59	Methylal	CH ₃ —CH $\zeta_{OCH_3}^{OCH_3}$
60	Ethylal	CH ₃ —CH $\langle {}^{\text{OCH}_2\text{CH}_3}_{\text{OCH}_2\text{CH}_3}$
61	Mercaptal	$_{\rm H}^{\rm R} > C <_{\rm SR}^{\rm SR}$
62	Mercaptol	$R_{R} > C <_{SR}^{SR}$

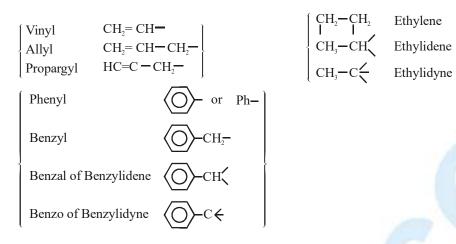
63	Mercaptan	R–SH	
64	Mercaptide	R–S–R	
65	Mesitylene	H ₃ C CH ₃	
66	Toluene	CH3	
67	Cummene or Isopropyl benzene	CH-CH-CH ₃	
68	Acetanilide		
69	Benzanilide		
70	Anisole		
71	Phenetole	\bigcirc OC_2H_5	
72	Azo benzene	N = N - O	
73	Hydrozo benzene		
74	Phthalic acid	СООН	
75	Phthalic anhydride		
76	Phthalimide	CO CO NH	
77	Anthranilic acid	COOH NH ₂	
78	Sulphanilic acid (Forms zwitter ion)	SO ₃ H NH ₂	

NOMENCLATURE OF ORGANIC COMPOUND

79	Aspirin (Analgesic) or	СООН
	o-Acetoxy benzoic acid	O-C-CH ₃
80	Salol (Antiseptic)	OT OH
	or Phenyl salicylate	C-OPh U
81	Oil of wintergreen	Ю́ ^{ОН}
	or Methyl salicylate	C-OCH ₃
82	o-Cresol	OH CH ₃
83	o-Toluic acid	COOH CH ₃
84	o-Toluidene	NH ₂ CH ₃
85	p-Benzoquinone	O= O (Antiaromatic)
86	Gammexane or Lindane or BHC (Benzene hexachloride)	$Cl \leftarrow Cl \\ Cl \leftarrow Cl \\ Cl \leftarrow Cl \\ Cl \\ Cl \\ $
87	Salicylaldehyde	ОНСНО
88	Salicylic acid	OH COOH
89	Picric acid	O ₂ N – OH NO ₂ NO ₂
90	Tosyl chloride	CH ₃ -SO ₂ Cl
91	Styrene	\bigcirc -CH = CH ₂
92	o-Xylene	CH ₃ CH ₃

Systematic common name of hydrocarbons

CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	CH ₃ -CH-CH ₂ -CH ₃	CH ₃ CH ₃ -C-CH ₃	
n-Pentane	CH ₃ Isopentane	CH ₃ Neopentane	
$CH_3 - CH_2 - CH_2 - CH_3$	CH ₃ -CH-CH ₃ I CH ₃	CH ₃ -CH ₂ -CH ₃	
n-Butane	Isobutane	Propane	
CH ₂ =CH-CH ₂ -CH ₃	CH ₃ -CH=CH-CH ₃	CH ₂ =C-CH ₃ CH,	
a-Butylene	β-Butylene	Isobutylene	
	ETOOS KEY POINTS		


- (i) prefix "n" is used for unbranched carbon chain.
- (ii) prefix 'iso' is used when one methyl groups are attached on 2nd carbon from either terminal.
- (iii) prefix "neo' is used when two methyl groups are attached on 2^{nd} carbon from either terminal.
- (iv) Prefix " α/β " is used to locate the position of double bond.

Common names of hydrocarbon radicals

$-CH_2-CH_3$
$-CH_2-CH_3$
$-CH_2-CH_3$
$-CH_2$
-CH ₃
CH ₃
$H_2 - CH_3$

NOMENCLATURE OF ORGANIC COMPOUND

Common Names of hydrocarbon derivatives

For systematic common names of these compounds we are dividing whole functional groups in following two system

System – I

In this system prefix is decided by hydrocarbon radical (as discussed above) and suffix is given by following table

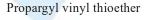
S. No.	Functional Group	Suffix
1	$-SO_{3}H$	sulphonic acid
2	–OH	alcohol
3	–SH	thioalcohol
4	-NH ₂ /-NH-/-N-	amine
5	-0-	ether
6	-S-	thioether
7	-X	halide
8		ketone
9	-C≡N	cyanide
10	−N ⊒ C	isocyanide

Ex. CH₃-CH-SO₃H CH. Isopropyl sulphonic acid

> CH₂CH₂-N+CH₂CH₃ CH,CH,

Triethyl amine

CH3 -OH CH.


t-Butyl alcohol

CH₂Br

CH₂=CH+S+CH₂−C≡CH

Benzal (di) cyanide

CH₃-CH-CH-CH₃ NH. Active isopentyl amine or Active isoamyl amine

CH CH-CH₃ Ö CH. Isopropyl methyl ketone

 $CH_2 - CH_2 - CH_2$ Cl

Trimethylene chloride

CH₃-O-CH₂CH₃

Ethyl methyl ether

```
CH<sub>3</sub>−N≡C
```

Methyl isocyanide

-CH₃ CH

Dimethyl ketone or Acetone

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91 - 9350679141

System - II

In this system prefix is decided by total number of carbon atoms in the compound

If total car	bon \Rightarrow	One	Two	Three	Four	Five
Prefix	⇒	Form	Acet	Propior	n Butyr	Valer
And suffix	is given follo	owing table	:			
S. No.	Func	tional Grou	ıр	Suffix		
1	-CO	OH		ic acid		
2	-cc)>o		ic anhy	dride	
3	-C- 0	OR		Alkyl	ate	
4	-CO2	X		yl halid	le	
5	-COl	NH ₂		amide		
6	–CHO)		aldehy	de	
7	–C≡N	1		onitrile	0	
8	-N	C		oisoniti	rile	

Ex.

CH₃ CH₃

Methyl acetate

H-COOH

Formic Acid

Acetic anhydride

Cl

Ö

Acetyl chloride

CH₃

CH

Acetic propionic anhydride

CH₃-CH-CHO

CH₃-CH

CH₃ Isobutyraldehyd CH

CH.

Neovaleramide

CH

CONH₂

 $-C_2H_5$ CH₃-CH-ĊH₂ Ö

Ethyl isobutyrate

EDUBULL KEY POINTS

(i)	Prefix	"Acryl" is used for the compou	nds which have total three carbon atoms and double bond is on 2^{nd} carbon.
	(only	for system II groups)	
	Ex.	$CH_2 = CH - COOH$	Acrylic acid
		CH ₂ =CH–CHO	Acryl aldehyde
		CH ₂ =CH-CONH ₂	Acrylamide
(ii)	Prefix	"Croton" is used for the compo	unds which have total four carbon atoms and double bond is on 2^{nd} carbon.
	(only	for System groups)	
	Ex.	CH ₃ -CH=CH-COOH	Crotonic acid
		CH ₃ -CH=CH-CHO	Croton aldehyde
		CH ₃ -CH=CH-COCl	Crotonyl chloride
(iii)	Prefix	"Pyruv" is used when CH ₃ -C-	is directly attached with (system II) functional groups.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

Systematic common name of hydrocarbons

CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	CH ₃ -CH-CH ₂ -CH ₃ L CH ₃	CH ₃ -CH ₃ CH ₃ -C-CH ₃ CH ₃	
n-Pentane	Isopentane	Neopentane	
$CH_3 - CH_2 - CH_2 - CH_3$	CH ₃ -CH-CH ₃	CH ₃ -CH ₂ -CH ₃	
n-Butane	Isobutane	Propane	
CH ₂ =CH-CH ₂ -CH ₃	CH ₃ -CH=CH-CH ₃	CH ₂ =C-CH ₃ CH ₃	
α-Butylene	β-Butylene	Isobutylene	

EDUBULL KEY POINTS

- (i) prefix "n" is used for unbranched carbon chain.
- (ii) prefix 'iso' is used when one methyl groups are attached on 2nd carbon from either terminal.
- (iii) prefix "neo' is used when two methyl groups are attached on 2^{nd} carbon from either terminal.
- (iv) Prefix " α/β " is used to locate the position of double bond.

Common names of hydrocarbon radicals

(n-Propyl	$CH_3 - CH_2 - CH_2 - 1$		
	CH ₃ -CH- L CH ₃		
		n-Pentyl s-Pentyl	$\begin{array}{c} CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{3}-CH_{3}-CH_{3}-CH_{2}-CH_{2}-CH_{3}-CH$
n-butyl Isobutyl s-butyl t-Butyl	$\begin{array}{c} CH_{3}-CH_{2}-CH_{2}-CH_{2}-\\ CH_{3}-CH-CH_{2}-\\ CH_{3}-CH_{2}-CH-CH_{3}\\ CH_{3}-CH_{2}-CH-CH_{3}\\ CH_{3}-CH_{2}-CH-CH_{3}\\ CH_{3}-CH_{3}-CH_{3}-CH_{3}\\ CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}\\ \end{array}$	Active s-pentyl Isopentyl Active isopentyl Neopentyl	$\begin{bmatrix} CH_{3}-CH-CH_{2}-CH_{2}-CH_{3}\\ CH_{3}-CH-CH_{2}-CH_{2}-CH_{2}-CH_{3}\\ CH_{3}-CH-CH-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}\\ CH_{3}-CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}-CH_{$
		t-pentyl Active pentyl	$\begin{bmatrix} I \\ CH_3 \\ CH_3 - CH_2 - CH_2 - CH_3 \\ CH_3 \\ - CH_2 - CH_2 - CH_2 - CH_3 \\ CH_3 \end{bmatrix}$

Alkenes : Alkenes are open chain unsaturated hydrocarbons and having carbon-carbon double bonds (C = C). They have the general formula $C_n H_{\lambda_n}$ where n = 2, 3, 4, ... etc. These are also called alkylenes or olefins. The first three members are generally named by their common names.

_	$CH_2 = CH_2$	CH_3 - $CH=CH_2$	$CH_3 - CH_2 - CH = CH_2$	$CH_3 - C = CH_2$
Ex,	ethylene	propylene	butylene	Isobutylene

CH₃

Alkenyl groups : Like alkyl groups (alkane – H), there are three commonly encountered alkenyl groups which are given common names.

Ex.

 $CH_2 = CH_2 \xrightarrow{\text{remove H}} CH_2 = CH -$ vinyl group $CH_{2} = CH - CH_{3} - CH_{3} - CH_{2} = CH - CH_{2} - CH_{3} - CH_{2} = CH - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{$

Alkynes : Unsaturated aliphatic hydrocarbons containing a carbon – carbon triple bond are called alkynes. In the common system, they are called acetylenes, after the name of the first member of this family. (i.e. acetylene)

General form	nula :	

Common Names:

IUPAC names:

 $C_n H_{2n-2}$ where n = 2, 3, 4, etc. Acetylene and its alkyl derivatives. Alkane - ane + yne = Alkyne

The position of the triple bond on the parent chain is designated by lowest possible arabic numerals The common names of a few simple alkynes are given below.

 $n=2 \longrightarrow CH \equiv CH$ Acetylene $n=3 \longrightarrow CH_3 - C \equiv CH$ Methyl acetylene $n=4 \longrightarrow CH_2 - CH_2 - C \equiv CH$ Ethylacetylene $n = 6 \longrightarrow CH_3 - C \equiv C - CH_{CH_3}$ Methyl isopropyl acetylene

Alkynyl groups

 $HC \equiv CH \xrightarrow{-H} HC \equiv C -$ (-e+yl=Ethynyl)

 $H_3C - C \equiv CH \xrightarrow{-H} H_3C - C \equiv C -$ (-e+yl=propynyl)

FUNCTIONAL GROUP AND RESIDUE

The characteristic group of atom which decided the physical and chemical properties of an organic molecule is called functional group.

Functional group is that portion of molecule which is highly reactive and takes part in chemical reactions. Rest of the molecule is called Residue.

F

No. of carbon	Prefix	-CH	IO (Aldehyde)	-C	OOH(–ic acid)	–COCI.(–y	l chloride)	–CONH ₂ (Amide)
atoms 1	Form	HCH Form	łO naldehyde	HCOOH Formic acid		HCOCl Formyl chlo	oride	HCONH ₂ Formamide
2	Acet	5	CHO taldehyde	CH ₃ COOH Acetic acid		CH ₃ COCl Acetyl chlo	ride	CH3CONH ₂ Acetamide
3	Propion	2	CH ₂ CHO pion aldehyde		₃ CH ₂ COOH pionic acid	CH ₃ CH ₂ CO Propionyl c		CH ₃ CH ₂ CONH ₂ Propionamide
4	Butyr	2	CH ₂ CH ₂ CHO utyraldlehyde		₃ CH ₂ CH ₂ COOH Butyric acid	CH ₃ CH ₂ CH n-Butyryl c		CH ₃ CH ₂ CH ₂ CONH ₂ n-Butyramide
5	Valer	HO	CH ₂ CH ₂ CH ₂ C	CH ₃ CH ₂ CH ₂ CH ₂ C OOH n-Valeric acid		CH ₃ CH ₂ CH n-Valeryl ch		CH ₃ CH ₂ CH ₂ CH ₂ CO n-Valeramide
3C+1 Double bond	Acryl	2	=CH-CHO ylaldehyde		CH ₂ =CH-COOH CH Acrylic acid Ac		OC1 ide	CH ₂ =CH-CONH ₂ Acrylamide
4C + 1 Double bond (at 2nd carbon atom)		5	-CH=CH-CHO tonaldehyde	CH	₃ CH ₂ = -COOH otonic acid	CH ₃ CH ₂ =Cl Crotonyl ch		CH ₃ CH ₂ = CH–CONH ₂ Crotonamide
No. of Carbon atoms	Prefix	ïx –CN(–O nitrile)		rile)	-N≡C (Oisonitrile) If Suffix isocyanide is is used than. Carbon atom of -NC not counted. If suffix carbyl amine is used. Carbon atom of -NC not counted. If O-isonitrile is used→ Carbon atom of -NC counted.		–COC Ester	DR
1	Form	1	H–C=N Formonitrile		H−N ≛ C Formoisonitrile		HCOC Methy	OCH ₃ vl formate
2	Acet		CH₃C≡N Acetonitrile		CH ₃ −N ≡ C Acetoisonitrile		5	DOCH ₃ vl acetate
3	Propion	1	CH ₃ CH ₂ C=N Propionitrile		CH ₃ CH ₂ N ≐ C Propionisonitrile			H ₂ COOCH ₃ vl propionate
4	Butyr	/	CH ₃ CH ₂ CH ₂ n-Butyronitr		CH ₃ CH ₂ CH ₂] n-Butyroison			H ₂ CH ₂ COOCH ₃ /l n-butyrate

Examples of Compound containing different functional groups with common /trivial names

5	Valer	CH ₃ CH ₂ CH ₂ CH ₂ C≡N n-Valeronitrile	$CH_3CH_2CH_2CH_2N \cong C$ n-Valeroisonitrile	$\begin{bmatrix} CH_3 - CH - CH_2 - COOCH_3 \\ I \\ CH_3 \\ Methyl isovalerate \end{bmatrix}$
3C+1 Double bond	Acryl	CH₂=CH–C≡N Acrylonitrile	CH ₂ =CH–NC Acrylisonitrile	CH ₂ =CHCOOCH ₃ Methyl acrylate
4C + 1 Double bond (at 2nd carbon atom)	Croton	CH₃CH=CH–C≡N Crotononitrile	CH ₃ -CH=CH–NC Crotonoisonitrile	CH ₃ CH=CHCOOCH ₃ Methyl crotonate

Other Example

	O O	
1.	О О ІІ ІІ Н—С—О—С—Н	Formic anhydride
2.	CH ₃ -C-O-C-CH ₃	Acetic anhydride
3	$H - C - O - C - CH_3$	Acetic formic anhydride
	O II	
4	$ \begin{array}{c} O \\ H - C - O - C_2 H_5 \\ C H_3 - C - C H_3 \\ O \\ O \\ \end{array} $	Ethyl formate
5	CH ₃ -C-CH ₃	Dimethyl ketone or acetone
	Ö	
6	$CH_3 - C - CH_2 - CH_3$	Ethylmethyl ketone
7	CH ₃ -CH ₂ -NH-CH ₃	Ethyl methyl amine or N–Methylaminoethane
8	(CH ₃) ₃ N	Trimethylamine or, N, N–Dimethyl aminomethane

SOME COMMON NAME OF HYDROCARBON ALKYL GROUPS

(A) Iso alkyl group

Ex.

A compound having $-CH_{-CH_{3}}$ group is called iso alkyl group

CH ₃ -CH-	$CH_3 - CH - CH_2 -$	$CH_3 - CH - CH_2 - CH_3$
CH ₃	CH_3	CH3
Iso propyl	Iso butyl	Iso pentane

Note :

Iso alkyl group name can be used in IUPAC Nomenclature and its first letter 'I' is consider for alphabetical seniority.

Ex.
$${}^{1}CH_{3} - {}^{2}CH - {}^{3}CH - {}^{4}CH_{2} - {}^{5}CH_{2} - {}^{6}CH_{3}$$

 ${}^{1}CH_{3} - {}^{1}CH - CH_{3}$
 ${}^{1}CH_{3} - {}^{1}CH - CH_{3}$
 ${}^{1}CH_{3} - {}^{1}CH - {}^{2}CH_{3} - {}^{2}CH_{3} - {}^{6}CH_{3} -$

3-Isopropyl-2-methylhexane

 4° Carbon atom = 1

(B) Neo alkyl group

Ex.

Compound having
$$\begin{pmatrix} CH_3 \\ CH_3 - C - CH_2 - \\ CH_3 \end{pmatrix}$$
 group is called neo alkyl group.
Ex. $CH_3 - C - CH_2 - CH_3 + CH$

(C) Type of carbon and hydrogen atoms in alkanes

The carbon atoms in an alkane molecule may be classified into four types as primary (1°) , secondary (2°) , tertiary (3°) and quaternary (4°) as follows

(a) A carbon atom attached to one another (or no other) carbon atom is called a primary carbon atom and is designated as 1° carbon.

Ex. (i)
$${}^{1^{\circ}}_{CH_{3}} - {}^{1^{\circ}}_{CH_{3}}$$
 (ii) ${}^{1^{\circ}}_{CH_{3}} - CH_{2} - {}^{1^{\circ}}_{CH_{3}}$

(b) A carbon atom attached to two other carbon atom is called a secondary carbon atom and is designated as 2° carbon.

(i)
$$CH_3 - \tilde{C}H_2 - CH_3$$
 (ii) $CH_3 - \tilde{C}H_2 - \tilde{C}H_2 - CH_3$

(c) A carbon atom attached to three other carbon atoms is called a tertiary carbon atom and is designated as 3° carbon.

Ex.
$$CH_3 - \frac{CH_3}{1} - CH_3$$
 (ii) $CH_3 - \frac{CH_3}{1} - CH_2 - CH_3$

(d) A carbon atom attached to four other carbon atom is called a quaternary carbon atom and is designated as 4° carbon.

Ex. (i)
$$CH_3 - CH_3$$
 (ii) $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$ (ii) $CH_3 - CH_2 - CH_3$
 $CH_3 - CH_3 - CH_2 - CH_3$

The hydrogen atoms attached to 1° , 2° , and 3° carbon atoms are called primary (1°) secondary (2°) and tertiary (3°) hydrogen atoms. It may be rotated here that there is nothing like quaternary hydrogen atom. Since a quaternary carbon does not carry any hydrogen.

Ex. How many 1°, 2°, 3° and 4° carbon atoms are present in following molecule.

$$CH_{3} - CH - CH - CH_{2} - CH - CH_{3}$$
$$CH_{3} - CH_{3} - CH_{3} - CH_{2} - CH_{3}$$
$$CH_{3} - CH_{3} - CH_{2} - CH_{3}$$

OII

Sol.

Sol.

 1° Carbon atoms = 6, 2° Carbon atoms = 2, 3° Carbon atoms = 2,

- **Note**: Primary, secondary, tertiary & quaternary carbon atoms in a molecule are denoted by the letters p, s, t and q respectively.
- **Ex.** How many 1° , 2° , 3° and 4° carbon atoms are present in following molecule.

CH₃ - CH₂ - CH₂ - CH₃ - CH₃
CH₃ - CH₂ - CH₂ - CH₃

$$\stackrel{1^{\circ}}{}_{CH_{3}}^{1^{\circ}} - \stackrel{2^{\circ}}{}_{CH_{2}}^{2^{\circ}} - \stackrel{2^{\circ}}{}_{CH_{2}}^{2^{\circ}} - \stackrel{2^{\circ}}{}_{CH_{3}}^{2^{\circ}} - \stackrel{1^{\circ}}{}_{L_{3}}^{2^{\circ}} - \stackrel{1^{\circ}}{}_{L_{3}}^{2^{\circ}}$$

Alkylidene group

alkane $\frac{-2H}{\text{from same carbon}}$ Alkylidene -

Alkylene group

Ex.

alkane $\frac{-2H}{\text{from different carbon}}$ Alkylene -

Position of double bond

In an unsaturated hydrocarbon if the position of double bond is on 1st or last carbon then it's prefix will be α (alpha) if it is on 2nd carbon it is termed as β (Beta) & the γ (gamma) & δ (delta) and so on.

$$\begin{split} H_2C &= CH - CH_2 - CH_3 \quad \alpha = butylene \\ H_3C - CH &= CH - CH_3 \quad \beta = butylene \\ H_3C - CH_2 - CH &= CH_2 \quad \alpha - butylene \\ H2C &= CH - CH_3 \text{ or } H_3C &= CH &= CH_2 \quad (Both are same positions, propylene) \\ H_3C - C &= CH_2 \\ L_{H_3} \quad Isobutylene \\ CH_3 - CH_2 - CH &= CH - CH_2 - CH_3 \quad \gamma - hexylene \\ CH_3 - CH_2 - CH &= CH - CH_2 - CH_2 - CH_3 \\ \delta - \text{ octylene} \end{split}$$

Amyl group

Secondary group

(a) The carbon having free valency attached to two carbon is called secondary carbon.

- (b) It is represented by following structure . C C C C
- **Ex. (i)** CH_3 -CH-CH₂-CH₃ (secondary butyl)

Tertiary group

- (a) The carbon having free valency attached to three other carbon.
- (b) It is represented by following structure -

Ex. (i)
$$CH_3 - C - CH_3$$

(Tertiary butyl)

(a) When two same halogen atoms are attached to the same carbon such compounds are called Gemdihalides.
 (b) Common names of such compounds are alkylidene halides.

СН₃-СН

Ethylidene chloride

Methylene halide (right)

CH₃-CH-CH $<_{\rm I}^{\rm I}$

С-С-С С-С-С СН₃ СН₃-С-СН₂-СН₃

(Tertiary pentyl)

Isobutylidene Iodide

$$CH_3 - CH <_X^X$$

Ex.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

When two same halogen atoms are attached to adjacent carbon, these are called as vicinal dihalides. **(c)** Common names of such compounds are alkylene halide.

Ex.
$$CH_3$$
- CH - CH_2 Propylene Iodide H_3C - C - CH_2 - Cl Isobutylene chloride H_3C - L - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - Cl Isobutylene chloride H_3C - H_3 - CH_3 - CH

(d) When two same halogen atoms are attached at the two ends of a carbon chain its common naming will be polymethylene halide.

C1

'poly' word indicates the number of -CH₂- groups. $-CH_{2}-$ 2 3 4 5 6 di tri tetra penta Hexa Poly $\begin{array}{c} \mathrm{CH}_2-\mathrm{CH}_2-\mathrm{CH}_2\\ \mathrm{I}\\ \mathrm{I}\\ \mathrm{I} \end{array}$ $CH_2 - CH_2 - CH_2 - CH_2 - CH_2$ I Br BrEx. Trimethylene Iodide Pentamethylene Bromide

Exception :

 $CH_2 - X$ dimethylene halide (wrong) $CH_2 - X$ ethylene halide (right)

Common – Naming of Di–Hydroxy Compounds

When two-OH groups are attached to adjacent carbon atoms they are termed as alkylene glycol. **(a)**

	OH
$CH_3 - CH_2 - CH - CH_2$	CH ₃ -CH ₂ -CH ₂ -OH
ОН ОН	CH_3
Butylene glycol	Active amylene glycol

(b) When two -OH group are attached at the two ends of a carbon chain, these compounds are named as polymethylene glycol

Poly \rightarrow Number of CH, groups.

Ex. CH ₂ -CH ₂ - I OH	-CH ₂ -CH ₂ I OH	CH ₂ -CH ₂ -	$CH_2 - CH_2 - CH_2$ I OH
Tetra methy	lene glycol	Hexamethylene g	lycol
Execution :			

Exception :

Dimethylene glycol (wrong) CH₂-OH CH₂-OH Ethylene glycol (right)

PROBLEMS

Make the structure of following organic compounds -1. Isopropylidene Bromide 2. Active amylene Iodide 3. Isobutylene glycol 4. Isobutylene 5. Trimethylene glycol

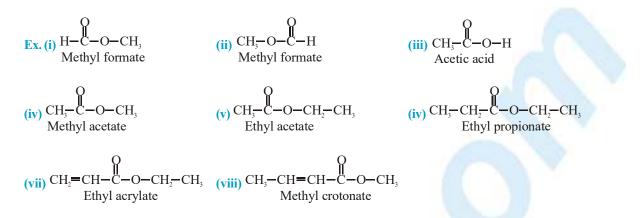
ANSWERS

$$1. CH_{3}-C \overset{Br}{\underset{CH_{3}}{\leftarrow}} Br = 2. CH_{3}-C-CH_{2}-I = 1 \\ I \\ CH_{2}-CH_{3} \\ I \\ CH_{2}-CH_{3} \\ CH_{3}-C-CH_{2}-OH \\ I \\ CH_{3} \\ CH_{3}-C-C=CH_{2} \\ I \\ CH_{3} \\ C$$

Common - Naming of the Functional Group Having Carbon

(Common naming for Hydrocarbon derivatives)

		(Comn	non naming for Hydro	carbon derivatives)
		S. No.	Functional group	Suffix
		(i)	о —С—ОН	-ic Acid
		(ii)	$\begin{array}{c} 0 & 0 \\ \parallel & \parallel \\ -C - 0 - C - \end{array}$	- ic anhydride
		(iii)	$-\mathbf{I}$	-ate
		(iv)	$-C-NH_2$	amide
		(v)		-yl halide
		(vi)	$ \begin{array}{c} O \\ H \\ -C - H \\ -C \equiv N \end{array} $	-aldehyde
		(vii)	$-C \equiv N$	-o-nitrile -o-isonitrile
		(viii)	-N ≡C	-0-1501111116
Ex.	\rightarrow double bond H-C-H Formaldehyd	= Acryl -	 → Normal- → Iso → Secondary- → Tertiary- 4 C + double bond = 	O EH₃−C−O−H Acetic Acid
	CH ₃ —CH ₂ — Propionyl ch		С	H_3 -CH-C-NH ₂ CH ₃ Isobutyramide
CH ₃ -C-	н			
Acetaldel	nyde			
Nomenclature of	of Ester			


The group which is attached to the oxygen is written as alkyl & the remaining structure is named on the basis of Functional Group suffix.

NOMENCLATURE OF ORGANIC COMPOUND

C.H.

Propionic anhydride

Nomenclature of Anhydride

Rule : Add the total number of carbon atoms & divide it by 2, the substrate will give you the number of C- atom. Now name it according to suffix use for anhydride.

$$\frac{\text{Total}}{2} = \text{Substrate} = \text{Number of C atom}$$

$$\frac{4}{2} = 2$$
 CH₃-C-O-C-CH
Acetic anhydride

If $R \neq R'$, You need to find out substrate.

$$\begin{array}{c} \mathbf{C} \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \mathbf{H}_{3} - \mathbf{C} - \mathbf{O} - \mathbf{C} - \mathbf{C}_{2} \mathbf{H}_{5} \end{array}$$

Acetic propionic anhydride (right)

Propionic Acetic anhydride (wrong)

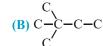
Divide it in two parts as above & name it by suffixing ic anhydride (alphabetically)

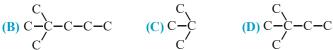
C₂H₂-C.H

Butyric propionic anhydride

 $\frac{6}{2} = 3 \qquad C_2 H_5$

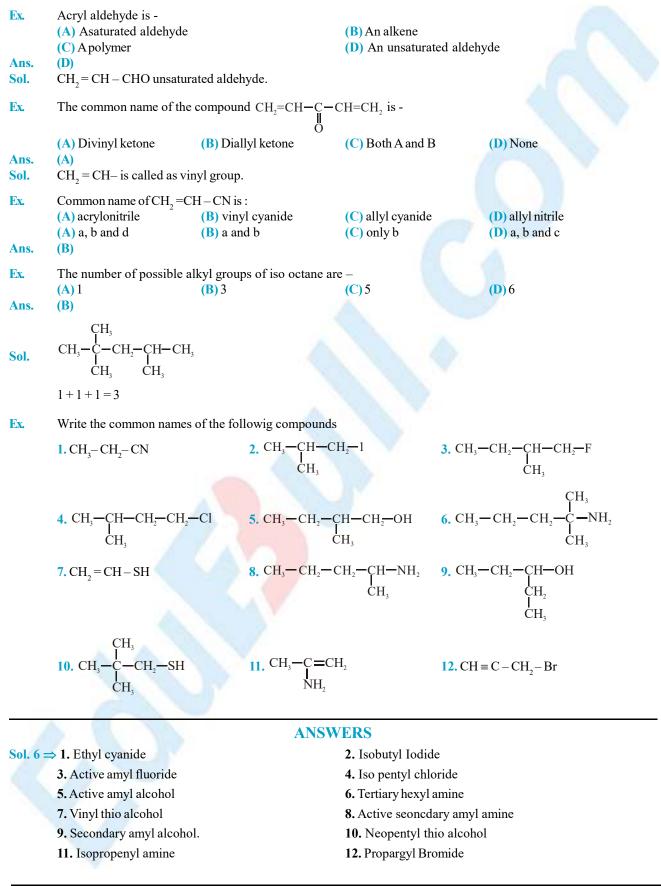
Isobutyric Secondary valeric anhydride


CH₂=CH CH₂=CH


Acrylic anhydride

Ex.

Which of the following is not a neo structure -


Ans.

Sol. A carbon must be a attached with four carbons.

Ex.

(A) C-

С

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

Derived Name System

According to this system name of any compound is given according to the representative compound of the homologous series. This system is reserved for following homologous series :

Series	Name of Homologous series	Name of Representative compound	Structure of group
1	Alkane	Methane	-C-
2	Alkene	Ethylene	>C=C<
3	Alkyne	Acetylene	C≡C
4	Alcohol	Carbinol	– <mark>С</mark> –он
5	Aldehyde	Acetaldehyde	–с–сно Г
6	Ketone	Acetone	
7	Carboxylic acid	Acetic acid	–с–соон

Ex.

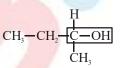
$$\begin{array}{c} H\\ CH_{3} - CH_{3}\\ CH_{3}\\ CH_{3}\\ Trimethyl methane \end{array}$$

Tetramethyl methane

Ethyl dimethyl methane

$$CH_{3} - CH_{2} - CH - CH_{3}$$

$$CH_{3} - CH_{2} - CH - CH_{3}$$


$$H_{1} - CH_{2} - CH_{3} - CH_{3}$$

Isobutyl Isopropyl methane

$$CH_3 - CH_2 - C - H$$

Ethylmethyl acetaldehyde

CH₃ CH₃ CH₃ C=C H

Ethylmethyl carbinol

Dimethy acetic acid

Trimethyl acetaldehyde

CH.

Symmetrical dimethyl ethylene

Tetramethyl ethylene

Unsymmetrical dimethyl ethylene Trimethyl ethylene

 $CH_3 + C = C + CH_3$ Dimethyl acetylene

Types of Ethylene :- (Symmetrical & Unsymmetrical)

- (a) Symmetrical : In the given two alkyl groups one group is attached to the one carbon of ethylene & next on the carbon.
- (b) Unsymmetrical : When both the given groups are attached on the same carbon. Note : Symmetrical & Unsymmetrical : Terms are used only when two alkyl groups are given. Ex.

Symmetrical dimethyl ethylene

$$H \\ CH_{3} C=C \\ H \\ H \\ CH_{3}-CH_{2} C=C \\ CH_{4} \\ CH_{5}-CH_{2} \\ H \\ CH_{5}-CH_{5} \\ CH$$

Unsymmetrical dimethyl ethylene

Symmetrical ethyl methyl ethylene

CH₃ CH₃ CH₃ CH₃ CH₃ CH₃

 $CH_{3} C=C CH_{3}$ $CH_{3} -C = C - CH_{3}$ $CH_{3} - C = C - CH_{3}$

Tri methyl ethylene

Tetra methyl ethylene

Dimethyl acetylene

PROBLEMS

Write down the derived names of the following compounds

1.
$$CH_2 = CH - CH_2 - C = C - H$$
 2. $CH_3 - CH_3 - CH_3$

 3. $CH_3 - CH_2 - C - OH_{CH_3}$
 4. $CH_3 - C - C - H_{CH_3}$

 5. $CH_3 - CH_2 - C - C - H_{CH_3}$
 6. $CH_3 - C - C - H_{CH_3}$

 5. $CH_3 - CH_2 - C - C - H_{CH_3}$
 6. $CH_3 - C - C - OH_{CH_3}$

 7. $CH_3 - C - CH_3$
 8. $CH_3 - CH_2 - C - CH_3$

 9. $CH_3 - C - CH_3$
 10. $CH_3 - C - CH_3$

 9. $CH_3 - C - CH_3$
 10. $CH_3 - C - CH_3$

ANSWERS

- 1. Allyl acetylene
- Ethyl methyl carbinol
 Ethyl methyl acetaldehyde
- 7. Tri mathul mathana
- 7. Tri methyl methane
- 9. Tetra methyl methane

- 2. Tri methyl carbinol
- 4. Tri methyl acetaldehyde
- 6. Di methyl acetic acid
- 8. Ethyl di methyl methane
- **10.** Tertiary butyl Isopropyl methane.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

IUPAC NOMENCLATURE OR GENEVA NAME SYSTEM

- The basic criterion for naming a structure by IUPAC system is choice of a parent name of the basic carbon skeleton.
 Nomenclature of alkanes is fundamental to naming whole class of organic compounds because it helps us identify
- the basic carbon skeleton. ⇒ General Rules for IUPAC Nomenclature
- IUPAC system is the most widely used system of nomenclature in organic chemistry.
- Most important feature is that any given molecular structure has only one IUPAC name and any IUPAC name denotes only are molecular structure.

The name consists of three parts :-

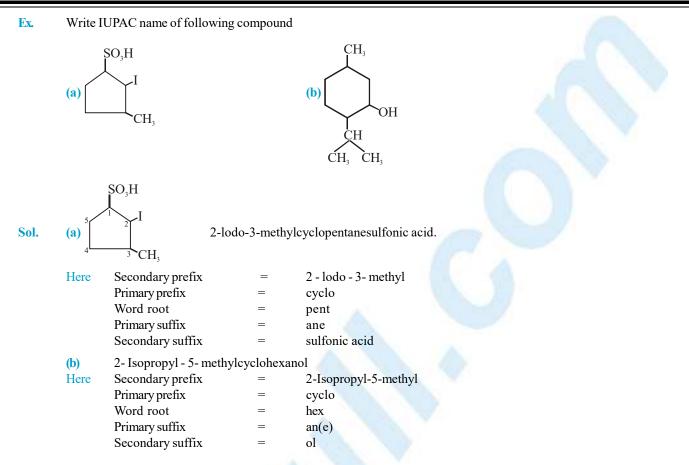
Prefix		+	Word root	+	Suffix	
Secondary [Detail of substituents]	Primary [Nature of Carbon chain cyclic/acylic]		[No. of carbon atoms in the principal chain]		Primary [Nature of carbon carbon bond]	Secondary [Details of functional group]

Primary Prefix : It represents the nature of the principle /parent chain.

Nature of chain	Primary Prefix
Acyclic /Non-cyclic	
Cyclic	Cyclo
Bicyclic	Bicyclo
Tricyclic	Tricyclo
Spiro	Spiro

Secondary Prefix : In IUPAC system of nomenclature, certain groups are not considered as functional groups but are treated as substituents. These are called secondary prefixes and are added immediately before the word root (or the primary prefix in case of carbocyclic compounds) in alphabetical order to denote the side chains or substituent groups. The secondary prefixes for some groups which are always treated as substituent groups (regardless of the fact whether the organic compounds is monofunctional or polyfunctional) are given below :

Substituent group	Secondary pr	efix Su	bstituent group	Secondary prefix		
- F	Fluoro	-C	OCH ₃ (– OMe)	Methoxy		
-Cl	Chloro		C,H,(–OEt)	Ethoxy		
-Br	Bromo	— R	2 0	Alkyl		
-I	Iodo	- C	$CH_3(-Me)$	Methyl		
$-NO_2$	Nitro		$H_{5}(-Et)$	Ethyl		
$-NO^{2}$	Nitroso		H,CH,CH,(n-Pr)	n-Propyl		
$\stackrel{\oplus}{-N} \equiv N$	Diazo	C	$H(CH_3)_2$ (-iPr)	Isopropyl		
-OR	Alkoxy	Alkoxy –C(t-Butyl		
Organic compounds	Secondary Prefix	Word root	Primary suffix	IUPAC name		
CH ₃ CH ₂ –Br	Bromo	eth	ane	Bromoethane		
$CH_3^3 - NO_2$	Nitro	meth	ane	Nitromethane		
$C_{2}H_{2}^{3} - OC_{2}H_{2}$	Ethoxy	eth	ane	Ethoxyethane		


Ex.	В
	4C
	H ₂ ⁵ C
	H_2C^6
	ıC

ĠН

4-Bromo	
Secondary	
prefix	

+ cyclo Primary prefix + hex Word root an(e) Primary suffix 1-ol Secondary suffix

Word Root: It is the basic unit of the name. It denotes the number of carbon atoms present in the principal chain (the longest possible continuous chain of carbon atoms including the functional group and based upon the common names of alkanes) of the organic molecules.

Chain length	Word root	Chain length	Word root	Chain length	Word root
C ₁	Meth	C ₉	Non	C ₂₀	lcos
Ċ,	Eth	\mathbf{C}_{10}	Dec	C_{30}^{20}	Triacont
C ₃	Prop	C_{11}^{10}	Undec	C_{40}^{30}	Tetracont
Č ₄	But	C_{12}	Dodec	C ₅₀	Pentacont
C ₅	Pent	C_{13}^{-1}	Tridec	$C_{60}^{\circ\circ}$	Hexacont
Č ₆	Hex	C_{14}	Tetradec	C ₇₀	Heptacont
$\tilde{C_7}$	Hept	C ₁₅	Pentadec	C ₈₀	Octacont
C_8	Oct	C_{16}^{15}	Hexadeca	C_{100}^{0}	Cent & Hect

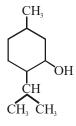
Primary Suffix : It represents the nature of C–C bonds in the principal/parent chain (whether single bond, double bond or triple bond).
Nature of bond
Primary suffix

SaturatedC-C single bondNature of bondUnsaturatedC = C bondC = C bond2C = C bonds2C = C bonds2C = C + C = C

ane **Primary suffix** ene yne diene diyne

ene + yne = enyne

If secondary suffix starts from a vowel or y then the last 'e' of first is omitted.


Secondary Suffix : A secondary suffix is then added to the primary suffix to indicate the nature of the functional group present in the organic compounds. Secondary suffix of important functional groups are given below in their decreasing order of seniority.

Class	Name	Suffix	Prefix
1. R – COOH	Alkanoic Acid	– oic acid (carboxylic acid)	carboxy
2. $R - SO_3H$	Alkane sulphonic acid	 sulphonic acid 	sulpho
$\begin{array}{c} \textbf{3. } \mathbf{R} - \mathbf{C} - \mathbf{O} - \mathbf{C} - \mathbf{R} \\ \textbf{I} \\ \mathbf{O} \\ \mathbf{O} \end{array}$	Alkanonic Anhydride	– oic anhydride (carboxylic anhydride)	
4. R – COOR	Alkyl alkanoate	–oate (carboxylate)	alkoxy carbonyl or alkanoyl oxy
5. R-C-X	Alkanoyl halide	–oyl halide (carbonyl halide)	halo carbonyl
$\begin{array}{c} 6. \ \mathbf{R} - \mathbf{C} - \mathbf{NH}_2 \\ \mathbf{H} \\ \mathbf{O} \end{array}$	Alkanamide	–amide (carboxamide)	carbomoyl
$7.R - C \equiv N$	Alkanenitrile	– nitrile (carbonitrile)	cyano
8. R-C-H II O	Alkanal	–al (carbaldehyde)	formyl/oxo
9. R-C-R	Alkanone	-one	οχο
10. R – OH	Alkanol	-ol	hydroxy
11. R – SH	Alkanethiol	-thiol	mercapto
12. $R - NH_2$	Alkanamine	– amine	amino

The following examples illustrate the use of word root, primary suffix and secondary suffix in naming of organic compounds.

Organic compounds	Word root	Primary suffix	Secondary suffix	IUPAC name
CH ₃ CH ₂ OH	Eth	an(e)	ol	Ethanol
CH ₃ CH ₂ CH ₂ NH ₂	Prop	an(e)	amine	Propanamine
CH ₃ CH ₂ CH ₂ COOH	But	an(e)	oic acid	Butanoic acid
CH ₃ CH ₂ CN	Prop	an(e)	nitrile	Propanentrile
CH ₂ =CHCHO	Prop	en(e)	al	Propenal
HC≡CCOOH	Prop	yn(e)	oic acid	Propynoic acid

Ex. Write the IUPAC name of the compound

Sol.	2 – Isopropyl - 5- methylcycloho Here	exanol or 2	-(1-methylethyl)-5-methyl cycl	ohexanol
	Secondary prefix	=	2 - Isopropyl 5 – methyl	
	Primary prefix	=	Cyclo	
	Word root	=	hex	
	Primary suffix	=	an (e)	
	Secondary suffix	=	ol	
Ex.	The correct IUPAC of the follo	wing comp	ound is –	
	(A) 1, 3, 4 - trimethyl cyclopent	ane		
	(B) 1, 3, 5-trimethyl cyclopenta	ne		\frown
	(C) 1, 3, 5-trimethyl cyclobutan	e		
	(D) 1, 2, 4-trimethyl cyclopenta	ne		
Sol.	(D)			
Ex.	The correct statement is about	following o	compound is –	QH
	(A) word root is But			\downarrow \land \downarrow
	(B) secondary prefix is cyclo			$\langle \gamma \rangle \rangle$
	(C) primary suffix is ol			
~ •	(D) primary prefix is cyclo			
Sol.	(D)			

Iupac Nomenclature of Saturated Unbranched Hydrocarbon

IUPAC name = Word Root + Primary Suffix **Ex.**

Meth + ane		Methane
Et <mark>h + ane</mark>	=	Ethane
Prop + ane		Propane
But + ane	-	Butane
Pent + ane	=	Pentane
hex + ane	=	Hexane
Undec + ane	=	Undecane
Triacont + ane	=	Triacontane
	Eth + ane Prop + ane But + ane Pent + ane hex + ane Undec + ane	Eth + ane=Prop + ane=But + ane=Pent + ane=hex + ane=Undec + ane=

IUPAC Nomenclature of Saturated Branched Chain Hydrocarbon /Complex Alkanes

(a) Select the longest chain of carbon atoms in the molecule.

(b) Count the number of carbon atoms in that chain and name according to the following rules. Ex.

$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - C$$

Longest chain has 7 carbons.

 $\therefore \text{ It is a } \frac{\text{hept}}{\text{word root}} + \frac{\text{ane}}{\text{primary suffix}}$

1

When chain of equal lengths are competing for selection, that chain is selected which has more number of substituents.

$$CH_{3}-H_{2}C - CH-CH-CH_{3}$$

$$H_{1}CH-CH_{2}-CH_{2}-CH_{3}$$

$$H_{2}CH-CH_{2}-CH_{2}-CH_{3}$$

Here the chain shown is selected.

2. Carbon atoms in the longest chain selected as above in numbered consecutively form on end to the other such that the substituents attached get the lower number.

In the above example, according to this rule, the numbering will be done as :

$$CH_{3}-H_{2}C - CH_{3} + CH_{3} + CH_{2}CH_{3} + CH_{3}CH_{3} + CH_{3}CH_{3} + CH_{3}CH_{3} + CH_{3}CH_{3} + CH_{2}-CH_{3} + CH_{3}CH_{3} + CH_{2}-CH_{3} + CH_{3}CH_{3} + CH_{3}CH_{3}$$

By this numbering, locant (substituents) get the number 2, 3 and 4 compared to 4, 5 and 6 if numbering is done from other end.

3. Each substituent, which obviously, is an alkyl group is named according to number of carbon atoms present in it and it is prefixed by the number to which it is located in the main chain. In the above example, substituents are as following :

– CH ₃ (methyl) group at carbon NO. 2	\Rightarrow	2-methyl
$-C_2H_5$ (ethyl) group at carbon NO. 3	\Rightarrow	3-ethyl
$-CH_2CH_2CH_3$ (propyl) group at carbon NO. 4	\Rightarrow	4-propyl
Hence, the above compound is named as :		
3-Ethyl-2-methyl-4-propylhentane		

3-Ethyl-2-methyl-4-propylheptane

If the same substituent occurs more than once in the molecule, the prefix di (for two), tri (for three), etc. 4. used to indicate how many times it appears.

The above example can be written with a little modification as : Ex.

$$CH_{3}-H_{2}C - \overset{3l}{C} - \overset{1}{C}H - \overset{1}{C}H_{3}$$

$$CH_{3}-H_{2}C - \overset{3l}{C} - \overset{1}{C}H - \overset{1}{C}H_{3}$$

$$CH_{3}-\overset{6}{C}H_{2} - \overset{6}{C}H_{2} - \overset{7}{C}H_{3}$$

$$H_{2}-\overset{6}{C}H_{2} - \overset{6}{C}H_{2} - \overset{7}{C}H_{3}$$

5. The name of the compound is composed in such a manner that each substituent with its number and name is written alphabetically just before the parent name. Prefixes di, tri, tetra etc. are not considered in deciding alphabetical order.

Ethyl will be written before methyl which will be written before propyl. *.*..

Note that in the above examples, this pattern has been compiled with.

*Also, as per convention

(i) numbers are separated each other by commas.

(ii) numbers are separated from words by hyphens and

(iii) write the name of the compound as a single word (with no space between)

Ex. Write the IUPAC name of

$$\begin{array}{c} H_{3}\overset{1}{C} - H\overset{2}{C} - H\overset{3}{C} - H\overset{4}{C} - H_{2}\overset{5}{C} - \overset{6}{C}H_{3}\\ I & I \\ CH_{3} & CH_{2} & CH_{3}\\ I \\ CH_{3} \end{array}$$

- 1. Primary suffix is ane as all are single bonds.
- 2. Chain is numbered as shown.
- 3. Root word is hed

5.

- 4. Prefixes methyl appears twice
 - Its is 2, 4-dimethyl and 3-ethyl *.*.. While arranging in alphabetical order Replicators di, tri, tetra, are not considered.
- ÷. 3-Ethyl-2, 4-dimethylhexane
- Write the IUPAC name of the following compounds. Ex.

(i)
$$\dot{C}H_3 - \dot{C}H_2 - \dot{C}H - \dot{C}H_3 - \dot{C}H_3 - \dot{C}H_3 - \dot{C}H_3 - \dot{C}H_3 - \dot{C}H_3 - \dot{C}H_3$$

- Sol. (i) 2, 2, 3-trimethylpentane (ii) 5-(1,2-dimethylpropyl)nonane
- Write IUPAC name of the following compounds -Ex.

(a)
$$CH_3-CH_2-CH-CH_2CH-CH_2-CH_2-CH_3$$

 I
 CH_3
 $CH_2-CH_2-CH_2$

$$\begin{array}{c} CH_{3} \\ I \\ CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{3} \end{array}$$

Sol. (a) 5-Ethyl-3-methyloctane (b) 4-Ethyl-2, 2, 6-trimethylheptane (c) 3-Methylhexane

6.

If Di, tri, tetra etc. are part of name of complex name then they considered in alphabetical order.

4-(1,1-Dimethyl)-3, 5-diethylheptane

5-Ethyl-3,4-bis(1-methylethyl)-2-methylheptane

(ii) ${}^{1}CH_{3} - {}^{2}CH_{2} - {}^{3}CH_{2} - {}^{4}CH_{2} - {}^{5}CH_{2} - {}^{6}CH_{2} - {}^{7}CH_{2} - {}^{8}CH_{2} - {}^{9}CH_{3}$

CH2-CH3

CH-CH,

CH₃

CH-CH₃ CH-CH,

CH-CH₃

ĊH,

7.

bis, tris, tetrakis are used for complex, alkyl substituents]

(i)
$${}^{1}CH_{3} - {}^{2}CH_{2} - {}^{3}CH_{2} - {}^{4}CH_{2} - {}^{5}CH_{3}$$

3-methylpentane

ĊH.-ĊH. ĊH**−**ĊH,**−**ĊH, CH,-CH

3-ethylhexane

Ex.

(ii)

(iii)
$$CH_{3}-CH_{2}-\overset{3}{C}H-\overset{4}{C}H_{2}-\overset{5}{C}H_{3}$$

 $H_{3}C-\overset{1}{C}H-\overset{1}{C}H_{3}$

(iv)
$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{3$$

(v)
$$\stackrel{CH_3}{\stackrel{1}{\overset{}_{\text{CH}_3}} - \stackrel{\circ}{\overset{}_{\text{CH}_2}} - \stackrel{\circ}{\overset{\circ}_{\text{CH}_2}} - \stackrel{\circ}{\overset{\circ}_{\text{CH}_2}} - \stackrel{\circ}{\overset{\circ}_{\text{CH}_3}} + \stackrel{\circ}{\overset{}_{\text{CH}_3}} \stackrel{\circ}{\underset{\text{CH}_3}} + \stackrel{\circ}{\underset{CH}_3} + \stackrel{\circ}{\underset{CH}_3} + \stackrel{\circ}{\underset{CH}_3} + \stackrel{\circ}{\underset{CH}_3} + \stackrel{\circ}{\underset{CH}_3} + \stackrel{\circ}{\underset{CH}_3} + \stackrel{}}{\underset{CH}_3} + \stackrel{}{\underset{CH}_3} + \stackrel{}}{$$

(vi)
$$\overset{\circ}{C}H_{3}-\overset{\circ}{C}H_{2}-\overset{\circ}{C}H-\overset{\circ}{C}H-\overset{\circ}{C}H_{2}-\overset{\circ}{C}H_{3}$$

 $H - \overset{\circ}{C}H_{2}-\overset{\circ}{C}H_{3}$
 $CH_{3} - \overset{\circ}{C}H_{2}$
 $CH_{3} - \overset{\circ}{C}H_{2}$

3-ethyl-2-methylpentane

```
3,3-diethyl-2,4-dimethyl-pentane
```

2,2,5-trimethylhexane

3-Ethyl-4-methylhexane

2-methyl-4-bis(1-methyethyl)heptane

$$\begin{array}{c} CH_2 - CH_3 \\ CH_3 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 \\ H_3 - CH_2 - CH_2 - CH_3 \\ H_3 - CH_3 - CH_3 \\ H_3 - CH_3 \\ CH_3 \end{array}$$

 $\dot{C}H_{3}$ - $\dot{C}H$ - $\dot{C}H_{2}$ - $\dot{C}H_{2}$ - $\dot{C}H_{3}$ - $\dot{C}H_{3$

(vii)

4-(1,1-dimethylethyl)-3-ethylheptane

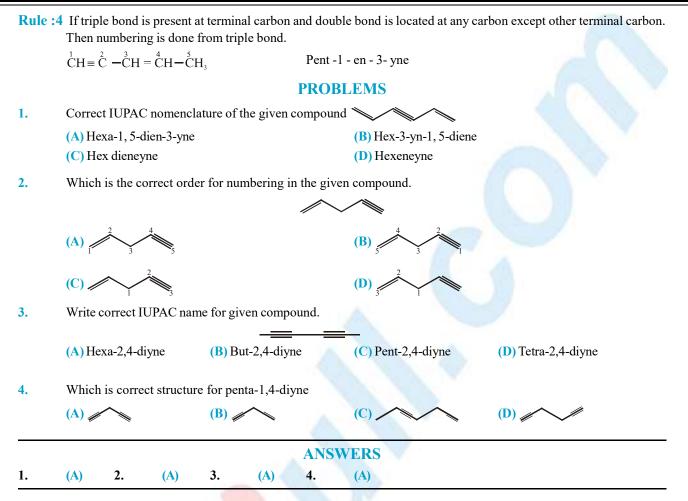
IUPAC NOMENCLATURE OF UNBRANCHED UNSATURATED HYDROCARBON (ALKENE/ALKYNE) Numbering of carbon chain

Rule :1 If unsaturated bond is present in the molecule at the terminal carbon, then numbering done from the side of unsaturated carbon.

Ex.	${}^{1}_{C}H_{2} = {}^{2}_{C}H - {}^{3}_{C}H_{2} - {}^{4}_{C}H_{3}$	But -1-ene
Ex.	${}^{1}_{C}H_{2} \equiv {}^{2}_{C} - {}^{3}_{C}H_{2} - {}^{4}_{C}H_{3}$	But-1-yne

Rule:2 If unsaturated bonds like double bond and triple bond is present at terminal carbon, then numbering always done from double bonded terminal carbon.

(Double bond preferred over triple bond when both bonds are at same position)


[°]CH₂−[°]CH₂−[′]CH₃

Ex. $^{1}_{\text{CH}_{2}} = ^{2}_{\text{CH}} - ^{3}_{\text{C}} ^{4}_{\text{CH}}$ But-1-en-3-yne

Rule :3 If unsaturated bonds like double bond or triple bond is present at terminal carbon, then numbering is done from either way.

Ex.
$${}^{1}_{CH_{2}} = {}^{2}_{CH} - {}^{3}_{C} = {}^{4}_{CH_{2}}$$
But-1, 3-dieneEx. ${}^{1}_{CH_{2}} \equiv {}^{2}_{C} - {}^{3}_{C} \equiv {}^{4}_{CH}$ But-1, 3-diyne

IUPAC NOMENCLATURE OF BRANCHED UNSATURATED HYDROCARBON (ALKENE/ALKYNE) Longest chain

Rule - 1 If unsaturated bonds like double bond or triple bond is present in the molecule, then that parent chain is considered which is containing unsaturated bonds like double bond or triple bond.

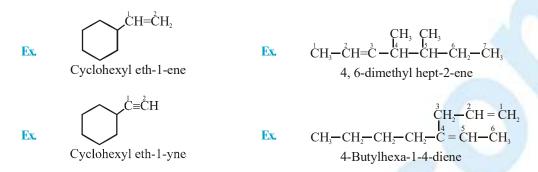
Longest P.C. should be selected such that
the double / triple should be inculcated within the chain
Ex.
$$\overrightarrow{CH_3}$$
- $\overrightarrow{CH_2}$ - $\overrightarrow{CH_3}$
Ex. $\overrightarrow{CH_3}$ - \overrightarrow{CH} = \overrightarrow{CH} - \overrightarrow{CH} - \overrightarrow{CH} = $\overrightarrow{CH_2}$ - $\overrightarrow{CH_3}$
Ex. $\overrightarrow{CH_3}$ - \overrightarrow{CH} = \overrightarrow{CH} - \overrightarrow{CH} = $\overrightarrow{CH_2}$ - $\overrightarrow{CH_3}$
CH₂- $\overrightarrow{CH_2}$ - $\overrightarrow{CH_3}$

Rule: 2 A primary suffix is added to the word root to indicate presence at double or triple bond in the parent chain.

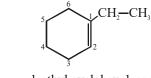
For one double bond = Word root + locant + ene

For one triple bond = Word root + locant + yne

In case the parent chain contains two or more double bonds, the prefixes di, tri, tetra, etc. are used before primary suffix.


For two double bonds, = Word root + locant + diene

For two triple bonds = Word root + locant + diyne



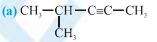
Numbering of carbon chain

Rule: 1 In branched alkene, select that parent chain which is containing maximum unsaturated double bond or triple bond and follow property of lowest locant rule.

Rule : 2 In branched alkene, if unsaturated double bond or triple bonds is present in the cyclic ring, then numbering is done from double bonded carbon of the cyclic ring and follow lowest locant rule properly.

Ex.

1-ethyl cyclohex-1-ene

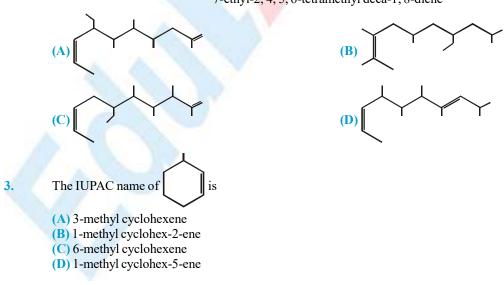

Ex. Write the IUPAC name of the following compounds :

Ex. Draw the bond line structures of the following compounds. (a) 2-Methyl-3-heptene (b) 2, 6-Dimethyl hept -1, 5-diene

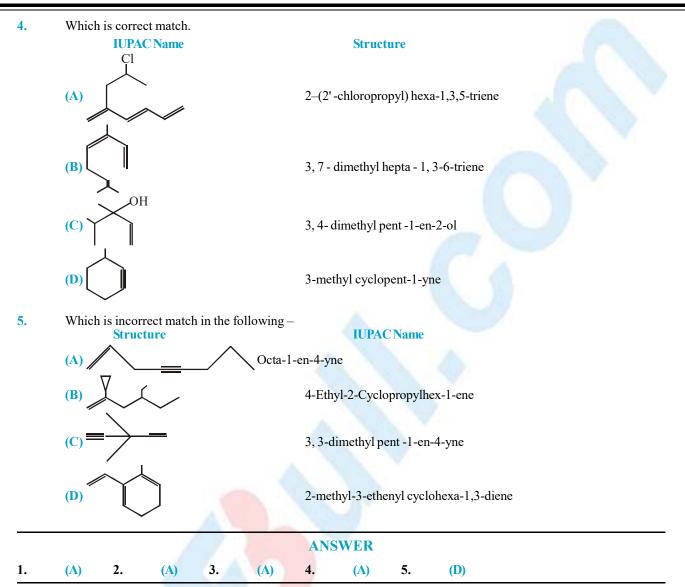
Sol.

Ans.

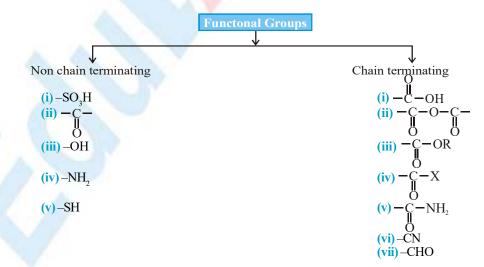
Write the IUPAC name of the following compounds : Ex.



Sol. (a) 4-Methyl-2-Pentyne (b) 4-Propyl-2-heptyne



- Ex. Write the IUPAC name of the following compounds : **(b)** H₃C-CH₂ -C≡CH (a) $CH_3 - C \equiv CCH(CH_3)_2$ ĊH,ĊH Sol. (a) 4-Methyl-2-pentyne, (b) 3, 4, 4-trimethyl-1-hexyne Write IUPAC name of the following compounds. Ex. (a) $CH_3 - CH_2 - C \equiv C - CH = CH_2$ **(b)** CH-CH₃ Sol. (a) 3-(2-Methyl propyl)-1-hepten-4-yne (b) Oct-1-en-4-yne Write IUPAC name of the following compounds. Ex. (a) $H - C \equiv CCH_2CH = CH_2$ **(b)** Sol. (a) pent-1-en-4-yne (b) 1, 4-heptadiene-6-yne **PROBLEMS** 1. Which is the correct way of number in the given compound.
 - (A) $4 = \frac{5}{3} = \frac{6}{2}$ (B) $4 = \frac{3}{5} = \frac{6}{6}$ (C) $3 = \frac{4}{2} = \frac{6}{1}$ (D) $6 = \frac{4}{1} = \frac{5}{2}$
- 2. Which is the correct structure for given IUPAC name. 7-ethyl-2, 4, 5, 6-tetramethyl deca-1, 8-diene



NOMENCLATURE OF ORGANIC COMPOUND

IUPAC NOMENCLATURE OF COMPOUNDS CONTAINING FUNCTIONAL GROUPS

Rule for non chain terminating Functional Groups

Parent chain : Select the longest possible chain with maximum functional group and maximum unsaturation with out **(A)** caring whether it also denotes the longest possible chain or not.

Ex.
$$\stackrel{4}{\text{CH}_3}$$
- $\stackrel{3}{\text{CH}_2}$ - $\stackrel{2}{\text{CH}_2}$ - $\stackrel{2}{\text{CH}_2}$ - $\stackrel{2}{\text{CH}_2}$ - $\stackrel{1}{\text{CH}_2}$ - $\stackrel{1}{\text$

(Parent chain contains four rather than five carbon atoms)

(B) Lowest number for the functional group : Numbering is done from that side of the chain which gives lowest locant to the principle functional group followed by double and triple bonds.

$$\overset{O}{\overset{C}{\operatorname{CH}_{3}}} - \overset{O}{\overset{C}{\operatorname{CH}}} - \overset{O}{\overset{C}{\operatorname{CH}_{2}}} - \overset{O}{\overset{C}{\operatorname{CH}_{2}}} - \overset{O}{\overset{C}{\operatorname{CH}_{2}}} - \overset{O}{\overset{C}{\operatorname{CH}_{3}}}$$

$$\overset{O}{\overset{O}{\operatorname{CH}_{3}}} - \overset{O}{\overset{O}{\operatorname{CH}_{2}}} - \overset{O}{\overset{O}{\operatorname{CH}_{2}}} - \overset{O}{\overset{O}{\operatorname{CH}_{2}}} - \overset{O}{\overset{O}{\operatorname{CH}_{3}}} + \overset{O}{$$

Ex.

Ex.

Ex.

Ex.

Ex.

 $\overset{c}{C}H_{3} - \overset{c}{C}H - \overset{d}{C}H_{2} - \overset{d}{C} - \overset{b}{C}H_{2} - \overset{b}{C}H_{3}$ (II) wrong

 $(\ge_{C=O} \text{ group gets number 4 which is not lowest})$

 $(\ge_{C=O} \text{ group gets lowest number 3})$

Rules for chain terminating functional groups

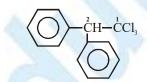
When a chain terminating functional group such as -CHO, -COOH, -COOR, -CONH,, COCl, -C=N etc. is present, (1) it is always given number 1 (one).

$$\begin{array}{c} & O \\ \stackrel{4}{C}H_{3} - \stackrel{3}{C}H_{2} - \stackrel{2}{C}H - \stackrel{0}{C} - OH \\ \stackrel{1}{C}H_{3} - \stackrel{1}{C}H_{2} - \stackrel{2}{C}H_{3} - OH \\ \stackrel{1}{C}H_{3} - \stackrel{1}{C}H_{3} - OH \\ \stackrel{1}{C}H_{3}$$

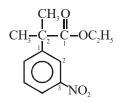
2-Methylbutan-1-oic acid

(2) If a compound contains two or more like groups, the numerical prefixes di, tri, tetra etc. are used

ÓН


Propane -1,2,3-triol

```
<sup>5</sup>CH<sub>3</sub>−C<sup>4</sup>≡C<sup>3</sup>−C<sup>2</sup>H<sub>3</sub>−C<sup>1</sup>H
```


Pent-3-yn-1-al

Pentane-2, 4-dione

(3) The name for benzene as substituent is phenyl. In case the phenyl ring is further substituted, the carbon atoms of the ring directly attached to the parent chain in such a ways that the substituent on the ring gets the least possible number.

1, 1,1-Trichloro-2,2-diphenyl ethane

Ethyl-2-methyl-2-(3-nitrophyenyl) propanoate

(4) If the organic molecule contain more than one similar complex substituents, then the numerical prefixes such as di, tri, tetra etc. are replaced by bis, tis, tetrakes etc. respectively.

2,2-Bis-(2-hydroxyethoxy) ethanoic acid

CH—CH₂—COOH I CH₃

Ex. Write IUPAC name of the following compounds :

(i)
$$CH_3CH_2$$
- CH - C - OCH_3 (ii) $(CH_3)_3COH$
 CH_2
 CH_3
 CH_3

Sol. (i) Methyl-2-ethylbutanoate (ii) 2-Methylpropan-2-ol (iii) 3-Methylbutanoic acid

NAMING OF NORMAL FUNCTIONAL GROUPS

Type I : Groups of this type are not considered as functional groups in IUPAC nomenclature. They are considered as substituents & there fore represented by prefix. type I functional group & their prefix are shown below :

Groups	Prefix
-F	fluoro
-Cl	chloro
-Br	bromo
- I	iodo
$-NO_2$	nitro
-NO	nitroso
-OR	alkoxy
-C-C-	epoxy

Rule for their nomenclature

Rule I : If two substituents are present on same position from different ends, then priority is decided on the basis of alphabetical order.

$$\overset{5}{\overset{}{\text{CH}}}_{12} - \overset{4}{\overset{}{\text{CH}}}_{2} - \overset{3}{\overset{}{\text{CH}}}_{2} - \overset{2}{\overset{}{\text{CH}}}_{2} - \overset{1}{\overset{}{\text{CH}}}_{12}$$

Rule II: If multiple bond and type I functional group both are present, the priority is given to multiple bond.

$$H_{3}C^{1} - CH^{2} = CH^{3} - CH^{4} - CH^{5} - CH^{2} - CI$$

Rule III : These groups are written is alphabetical order in IUPAC name.

 ${}^{5}CH_{3}$ $-{}^{4}CH_{2}$ $-{}^{3}CH_{2}$ $-{}^{2}CH_{2}$ $-{}^{1}CH_{3}$ Ex. 2-flouoropentane **(i)** H₃C-CH-CH₂-CH₂-CH-Cl L CH₂ CH₃ 5-chloro-2-flouoroheptane **(ii)** H₂C-CH₂--CH-CH₂-CH-Cl (iii) CH_{2} CH_{3}

3-chloro-5-flouoroheptane

(iv)	H ₃ C-CH-CH-CH-CH ₃	3, 5-dimethyl-4-nitro heptane
	$\begin{array}{cccc} H_3C - CH - CH - CH - CH_3 \\ I & I \\ CH_2 & NO_2 & CH_2 \\ I & I \\ CH_3 & CH_3 \end{array}$	
(v)	$\begin{array}{c} CH_2 - CH_2 - CH - CH_2 - C - CH_2 - CH_3 \\ I \\ NO \\ I \\ CH_2 \end{array}$	2-ethyl-4-iodo-6-nitroso hex-1-ene
(vi)	$\begin{array}{c} HC = CH - C - CH_2 - CH_2 - CI \\ I \\ CI \\ CH_2 \end{array}$	1-chloro-3-chloroethylbuta-1, 3-diene
(vii) (viii)	$H_{3}C - CH_{2} - O - CH_{2} - CH_{3}$ $H_{3}C - CH_{2} - O - CH_{2} - CH_{2} - CH_{3}$	ethoxy ethane 1-ethoxy propane
(ix)	$\begin{array}{c} H_{3}C-CH_{2}-CH-O-CH_{2}-CH_{2}-CH_{2}\\ I\\CH_{3}\end{array}$	2-propoxy butane
(x)	$\begin{array}{c} H_{3}C-CH_{2}-CH-O-CH-CH_{3}\\ I\\CH_{3}\\CH_{3}\\CH_{3}\end{array}$	2-(methyl ethoxy) butane or 2-isopropoxy butane
Expoxides		
(1)	CH ₃ -CH-CH ₂	1, 2-epoxy propane
(2)		3, 4-epoxy heptane
(3)		2-chloro-5, 6-epoxy octane
(4)		1, 3-epoxy propane
(5)		2, 4-epoxy-3-methyl pentane

NAMING OF DON FUNCTIONAL GROUPS

Type - II : Groups of this type are treated as functional groups and represented by suffix in IUPAC nomenclature. Priority table for functional group.

	S.No.	Functional group	Name	Suffix	Prefix
1	(1)	о —С—ОН	Carboxylic acid	oic acid	Carboxy
	(2)	$-SO_{3}H$	Sulphonic acid	sulphonic acid	Sulpho
	(3)		Acid anhydride	oic anhydride	_
	(4)	–C–OR II O	Ester	oate (alkyl + w.r.+oate)	Alkoxy carbonyl

NOMENCLATURE OF ORGANIC COMPOUND

(5)	−C−Cl ∥ O	Acid chloride	oyl chloride	Chlorocarbonyl
(6)	$-C-NH_2$	Amide	amide	Carbamoyl
(7)	$-C \equiv N$	Cyanide	nitrile	Cyano
(8)	$-N \equiv C$	Isocyanide	isonitrile	Isocyano
(9)	–CHO	Aldehyde	al	oxo/formyl
(10)	—C— — 0	Ketone	one	Oxo/keto
(11)	–OH	Alcohol	ol	Hydroxy
(12)	-SH	Thio-alcohol	thiol	Mercapto
(13)	$-NH_2$	Amine	amine	Amino
(14)	(=)		ene	
(15)	(≡)	1	yne	()

EDUBULL KEY POINTS

Functional groups are the group of molecules that are bonded to carbon atoms of the parent chain. Double bond and triple bond are present in the parent chain only, in max. no. of cases. That's why **Double bond & Triple bond** are **not true functional groups.**

w.r. \rightarrow Word Root

Rule for their nomenclature

(1) Selection of parent 'C' chain : longest possible 'C' chain with functional group and having maximum number of multiple bonds is selected as parent 'C' chain.

$$CH_2 = CH - C$$

$$H - CH_2 - CH_2 - CH_3$$

$$I$$

$$COOH$$

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

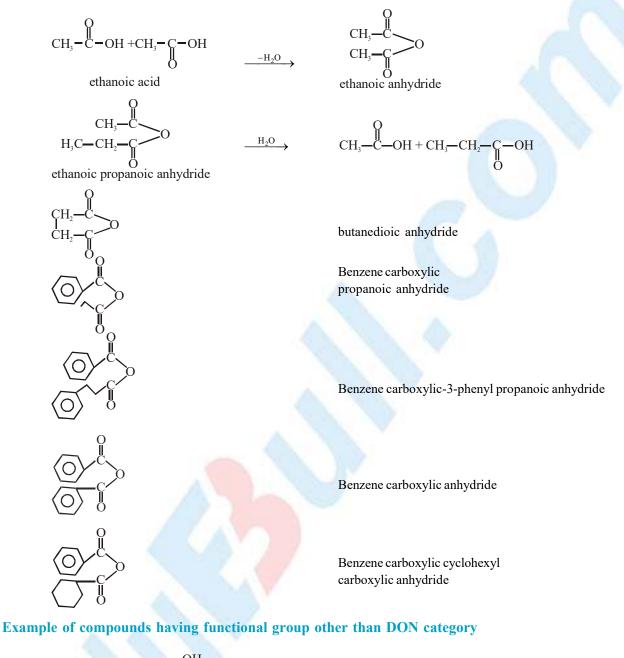
(2) Numbering

(a) Numbering starts from the side of functional group for numbering priority order is given below :

Functional group > Multiple bonds > Substituents

(b) If chain ending 'C' containing functional group is present then numbering starts from the 'C' of functional group these functional groups are knows as DON category functional groups functional groups of this category are shown below :

-COOH	-CN
	-CHO
-COOR	-COCl
-CONH ₂	


Rule 3 : 'e' of primary suffix is dropped if secondary suffix starts from a vowel. Example of compounds having don category functional groups :

	(i) (ii)	CH ₃ -CH ₂ -CH ₂ -COOH CH ₃ -CH-CH ₂ -CH ₃ COOH	Butanoic acid 2-methyl butanoic acid
	(iii)	$CH_3 - CH_2 - CC - CH_2 - CH_2 - CH_2 - CH_2 - CI$	4-ethyl pent-4-en-1-oylchloride
	(iv)	H NH ₂	methanamide
	(v)	CHO CHO	ethandial
	(vi)	NC-CH ₂ -CH ₂ -CH ₃	butane nitrile
	(vii)	$H_{2}N - C - CH_{2} - CH - CH_{2} - CH = CH_{2}$ $H_{2}N - C - CH_{2} - CH_{2} - CH_{2} - CH_{2} = CH_{2}$	3-ethenyl hex-5-en-1-amide
	(viii)	$CH_2 = CH - CH - C - Cl$ $Cl - H_2C - H_2C - CH_2$	2-(3-chloropropyl) but-3-en-1-oyl chloride C - O + R
Ester		Ż	
Ester	Ex.	alkanoate → alkyl alkano	alkyl
	(i)	$CH_{3}-C-O+CH_{3}$	Methyl ethanoate
	(ii)	$H - C - O - CH_2 - CH_3$	ethyl methanoate
	(iii)	$CH_3-CH-CH_2-C-O+CH_3$ CH_2-CI	methyl-4-chloro-3-methyl butanoate
	(iv) (v)	$C1-CH_{2}+O-C-CH_{3}$ H ₃ COOCCH ₃	chloromethylethanoate methyl ethanoate
	(vi)	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	methyl-2-ethyl butane-1,4-dialte

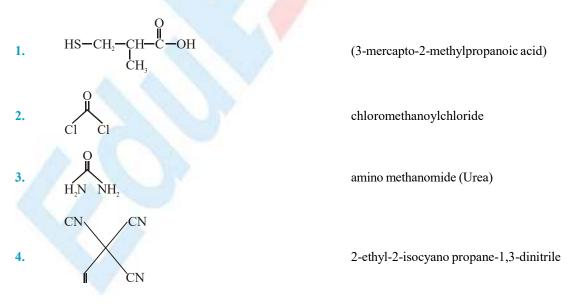
Anhydride : Nomenclautre of anhydride is done on the basis of the carboxylic acid from which it is obtained.

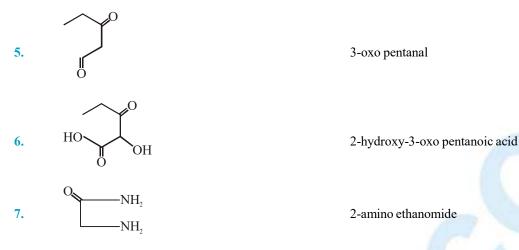
1.
$$H_{3}C-CH_{2}-CH_{2}-CH-CH-CH_{3}$$

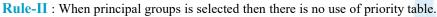
 $H_{3}C-CH_{2}-CH_{2}-CH_{2}$
2. $CH_{2}=CH-CH_{2}-CH-CH-CH_{3}$
 $H_{3}C-H_{2}C-H_{2}C-CH_{2}$
3. $H_{3}C-H_{2}C-H_{2}C-CH_{2}$
3. $H_{3}C-C-C-CH_{2}-CH_{3}$
 $CH_{2}=CH-CH_{2}-CH_{3}$
 $H_{3}C-H_{2}C-H_{2}-CH_{3}$
 $CH_{2}=CH-CH_{2}-CH_{3}$
 $H_{3}C-C-C-CH_{2}-CH_{3}$
 $CH_{2}=CH-CH_{2}-CH_{3}$
 $CH_{2}=CH-CH_{2}-CH_{3}$
 $CH_{2}=CH-CH_{2}-CH_{3}$
 $CH_{2}=CH-CH_{2}-CH_{3}$
 $CH_{3}=C-C-C-CH_{2}-CH_{3}$
 $CH_{3}=C-C-C-CH_{2}-CH_{3}$
 $CH_{3}=C-C-C-CH_{3}-CH_{3}$
 $CH_{3}=C-C-C-C-CH_{3}-CH_{3}$
 $CH_{3}=C-C-C-C-CH_{3}-CH_{3}$
 $CH_{3}=C-C-C-C-CH_{3}-CH_{3}$
 $CH_{3}=C-C-C-C-CH_{3}-CH_$

3-propylheptan-2-ol

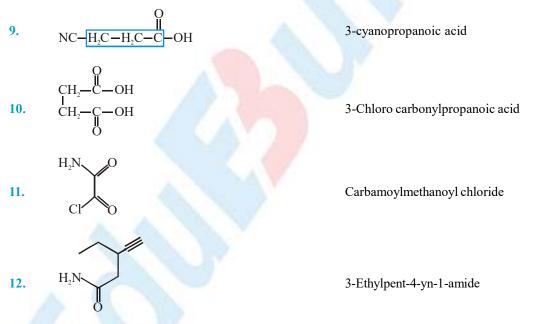
3-butyl hex -5-en-2-ol


2-methyl pent-1-ene-3-thiol




IUPAC NOMENCLATURE OF COMPOUNDS CONTAINING POLYFUNCTIONAL GROUPS

Rule - I : If more than one functional groups are present then one is selected as principal functional group and represented by suffix. Other functional groups are treated as substituents & represented by prefix. Selection of principal functional group is done according to priority table.



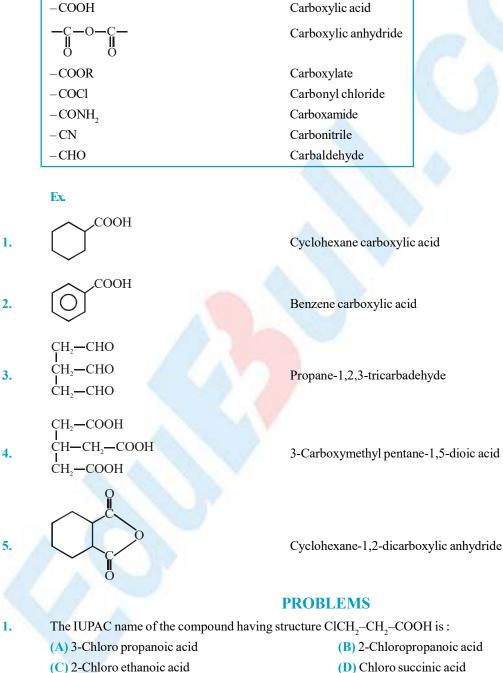
8.	$ \begin{array}{c} \text{COOH} \\ \text{H}-\text{C}-\text{OH} \\ \text{H}-\text{C}-\text{NH}_2 \\ \text{L} \\ \text{COOH} \end{array} $	3-amino-2-hydroxy butane-1, 4-dioic acid (Incorrect) 2-amino-3-hydroxy butane-1, 4-dioic acid (correct)
----	---	--

Rule III : If any DON functional group is present as sec. functional group then its 'c' is not included in principal 'c' chain except –CHO group.

Rule IV: As secondary functional group, if 'C' of –CHO group is included in percent 'c' chain then oxo is used as prefix, otherwise we use formyl group as prefix.

13.
$$\begin{array}{c} O \\ H - C - CH_2 - CH_2 - C - OH \end{array}$$

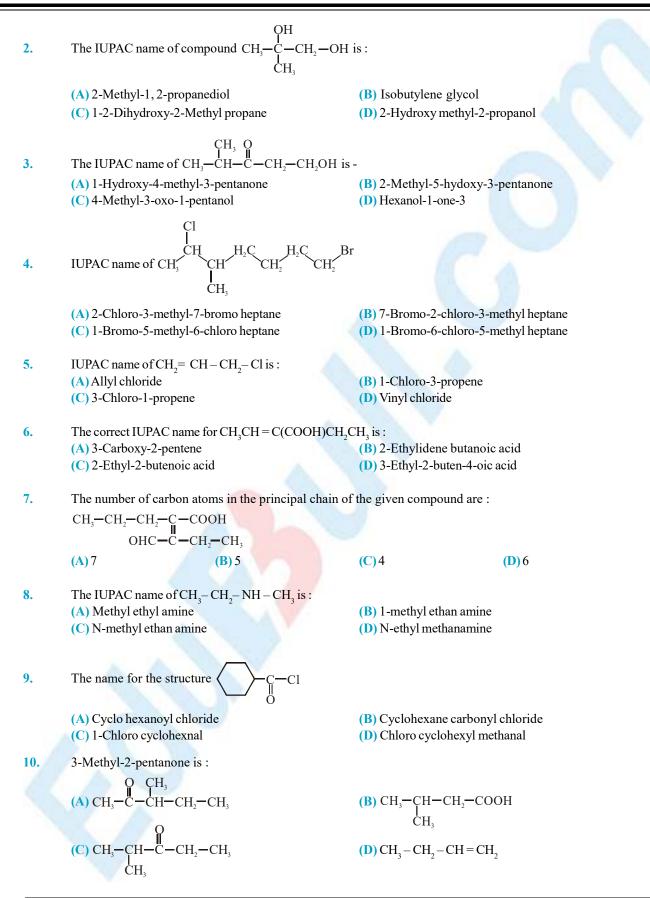
4-oxobutanoic acid


14.
$$\begin{array}{c} O \\ H-C-CH_2-CONH_2 \\ CH_2-CONH_2 \end{array}$$

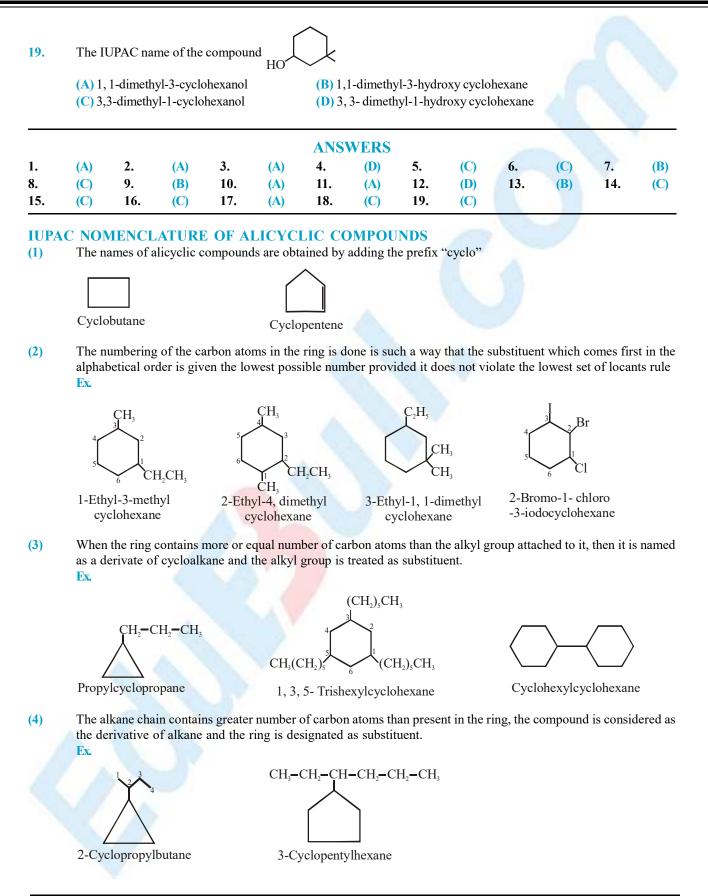
2-formyl butane-1, 4-diamide

 $Cl - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$ 15.

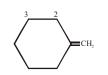
3,5-dioxopentanoyl chloride


IUPAC nomenclature if DON category functional group is present as principal functional group & its'c' is not included in parent 'c' chain \rightarrow

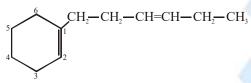
2.


5.

The name of $ClH_2C - C = C - CH_2Cl$ according to IUPAC nomenclature system is : 11. (A) 2, 3-Dibromo-1, 4-dichloro-2-butene (B) 1, 4-Dichloro-2, 3-dibromobutene-2 (C) Dichloro dibromo butene (D) Dichloro dibromo butene 12. The systematic IUPAC name for CH_3 -C-NH₂ and CH_3 -C-Cl are : (A) 1-Amino-1-oxo ethane, 1-chloro ethanal (B) 1-Amono ethanal, acetoy chloride (C) 1-Oxoethanamine, ethanoyl chloride (D) Ethanamide, Ethanoyl chloride The IUPAC name of the compound $CH_2-C=CH-C-NH_2$ is : 13. NH₂ OCH₃ O (A) 4-Amino-2-methoxy-1-amino-2-butene (B) 4-Amino-3-methoxy-2-butenamide (C) 2-Methoxy-1, 4-diamino-2-butenal (D) 1-Amino-2-methoxy-3-amido propene $\rightarrow C=0$ is: 14. The correct name for (A) 2-Hydroxy cyclopentanal (B) 2-Formyl-1-hydroxy cyclopentane (C) 2-Hydroxy cyclopentane carbaldehyde (D) Cyclopentane-2-ol-1-al 15. The IUPAC name of Cl-(A) Ethoxy formyl chloride (B) Ethoxy methanoyl chloride (C) Ethyl chloro methanoate (D) Ethoxy carbonyl chloride 16. IUPAC name of CH₃. -CH-CH, is: CH-CH, CN ĊH. (A) 2-cyano-3-methyl hexane (B) 3-methyl-5-ctabigexabe (C) 2-4-Dimethyl pentanentrile (D) 2-cyano-3-methyhexane 17. has the IUPAC name : (A) 3,4-Dimethyl-1-penten-3-ol (B) Isopropyl-3-methyl vinyl carbinol (C) 2, 3-Dimethyl-4-penten-3-ol (D) None of the above 18. Which of the following compound has wrong IUPAC name? CH-CH₂-CHO I CH₃ (A) CH₂CH₂-CH₂COO-CH₂CH₃ (B) CH₃ (Ethyl butanoate) (3-Methylbutanal) (C) CH₃-CH-CH -CH₃ I I OH CH₃ (D) CH₃-CH-C-CH₂-CH₃ I II OH O (2-Methyl-3-butanol) (2-Methyl-3-pentanone)



(5) If ring has unsaturation and side chain is saturated then ring is selected as parent chain.
 If side chain has unsaturation and ring is saturated then side chain is selected as parent chain.
 If both have unsaturation the chain with maximum unsaturation has selected as parent chain.
 If equal unsaturation then longest chain is selected as parent chain.
 If unsaturation and number of carbon atoms both are equal then ring is selected as parent chain.


Ex.

1-Ethyl Cyclohex-1-ene

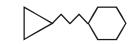
Methylene Cyclohexane

6-Ethyl-3,3-dimethyl cyclohex-1-ene

 $^{3}_{CH_{2}}$ $-^{2}_{CH}$ $-^{1}_{CH}$

3-Cyclopropyl prop-1-ene

1-(Hex-3-ene) Cyclohex-1-ene


(6) If, more than one alicyclic ring is attached to a single chain, the compound is named as a derivative of alkane and the ring treated as a substituent group.

Ex.

Dicyclopropylmethane

1, 3-Dicyclohexyl propane

- 1-Cyclohexyl-4-cyclopropylbutane
- (7) If a multiple bond and some other substituents are present in the ring, the numbering is done in such a way that the multiple bond gets the lowest number.

Ex.

(8)

Ex.

3-Nitrocyclohex-1-ene

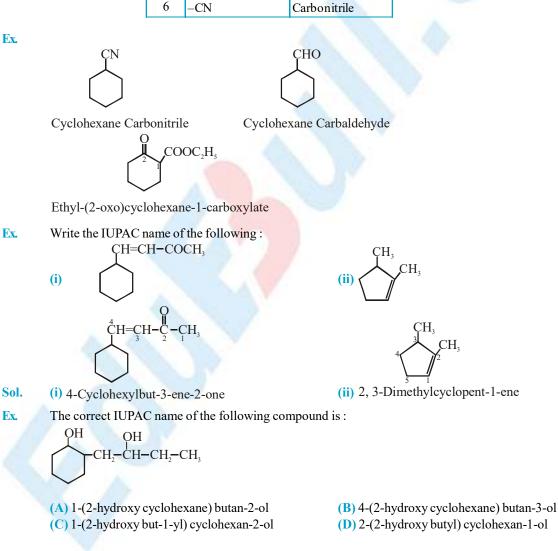
If a compound contains an alicyclic ring directly linked to the benzene ring. It is named as a derivative of benzene.

Cyclo hexyl benzene

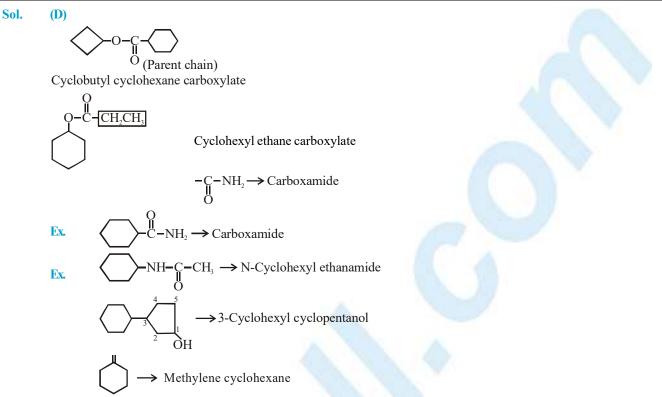
-NO,

1-(2-Methylcyclohexyl)-4-nitrobenzene

(9) If functional group is present in cyclic compounds the main chain is taken there principal functional is lie, if the principal functional group is present in ring also then main chain will be taken for the maximum no. of carbon atoms.


2-propylcyclohexan-1-ol

1-Cyclohexyl propane-2-ol

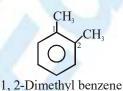

(10) When chain terminating functional group is directly attached with ring then ring is taken as parent chain & special suffix used for functional group.

S. No.	Functional Group	Suffix	
1	-CHO	Carbaldehyde	
2	-COOH	Carboxylic acid	
3	-COX	Carbonyl halid	
4	-COOR	Alkyl Carboxylate	
5	-CONH ₂	Carboxamide	
6	-CN	Carbonitrile	

Ex.

IUPAC NOMENCLATURE OF AROMATIC COMPOUNDS

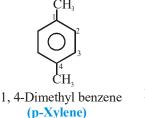
The aromatic compounds are cyclic compounds contains one or more benzene type rings. Benzene is the simplest hydrocarbon of aromatic series which has planar cyclic ring of six carbon atoms having three double bonds in alternate positions as shown below.


- (A) **Nuclear Substituted** The functional group is directly attached to benzene ring in the IUPAC system, they are named as derivate of benzene. The position of the substituents in disubstituted benzenes are indicates either by prefixes such as o-(ortho) for 1, 2, m-(meta) for 1, 3 and p(para) for 1, 4 position. However, many of their common names have also been adopted by the IUPAC system.
- (B) Side-Chain Substituted The functional group is present in the side chain of the benzene ring in the IUPAC systems, these are usually named as phenyl derivatives of the corresponding aliphatic compounds.

The IUPAC and common names of a few important members of each formyl are given below :

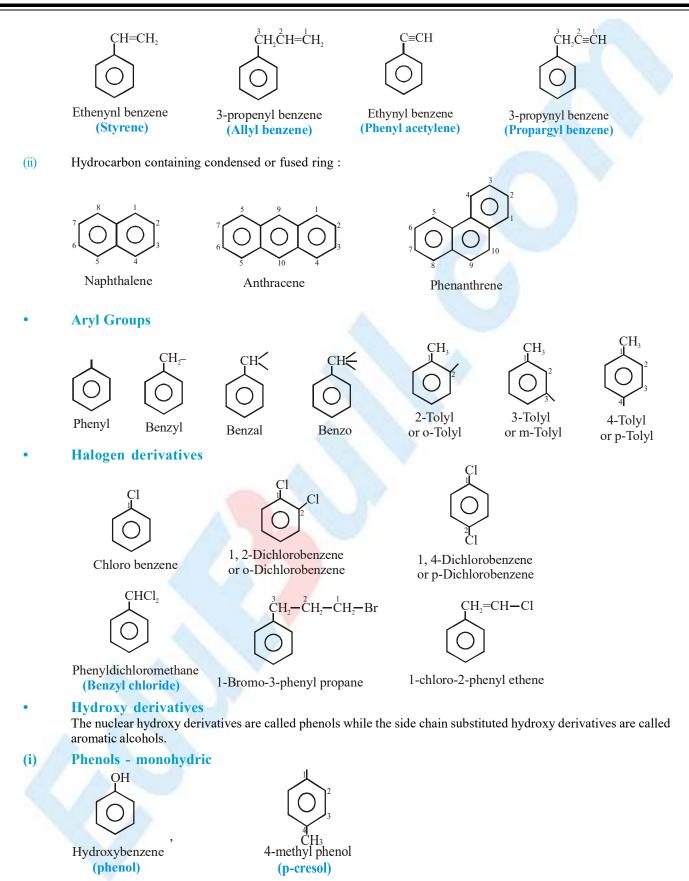
(a) Aromatic hydrocarbons (arenes) : Hydrocarbons which contain both aliphatic and aromatic units are called arenes. These are of two types

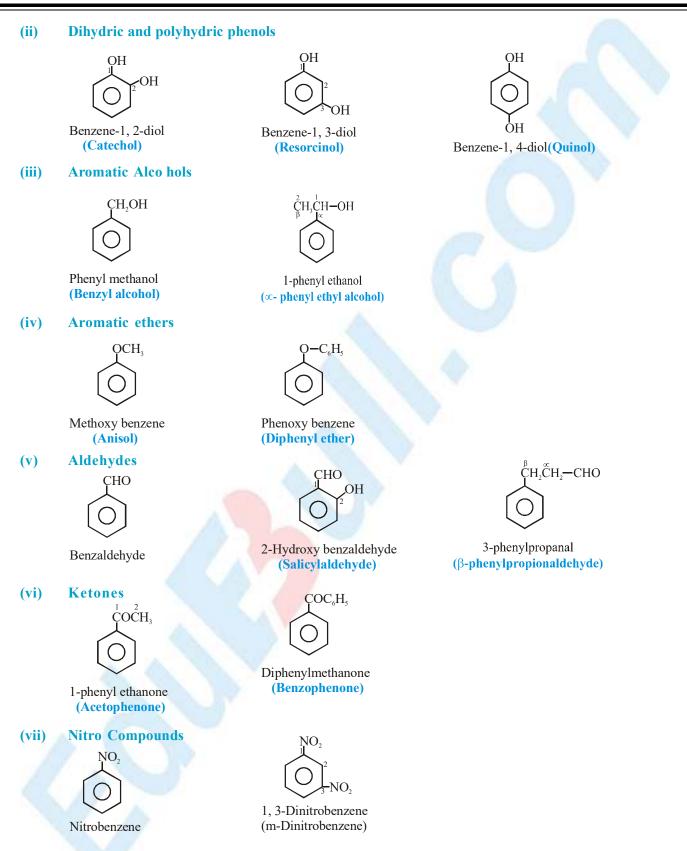
(i) Hydrocarbon containing one ring only.


Ex.

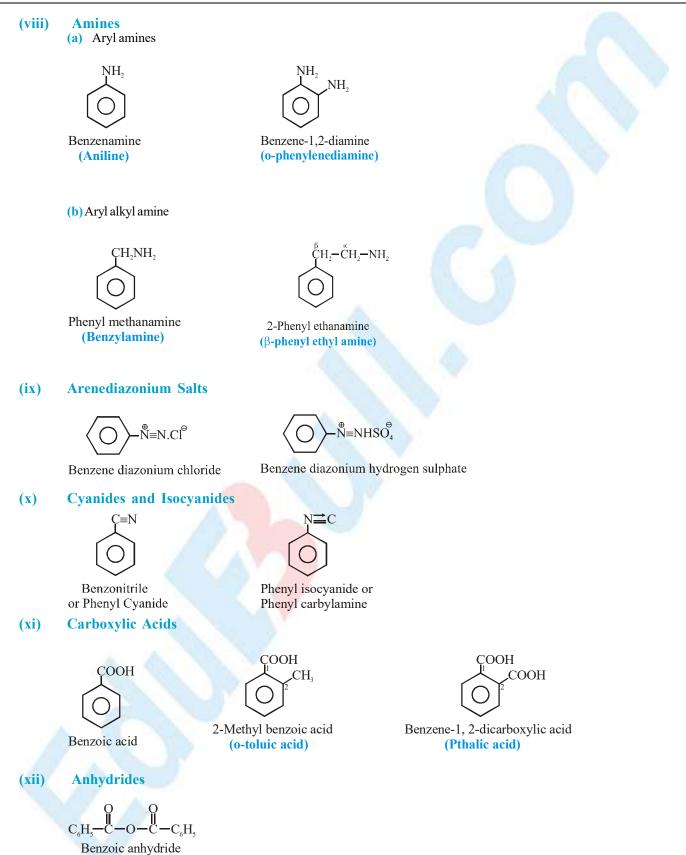
(o-Xylene)

CH₃

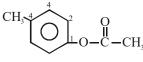




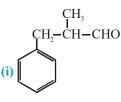
NOMENCLATURE OF ORGANIC COMPOUND



NOMENCLATURE OF ORGANIC COMPOUND


Benzoic annydric

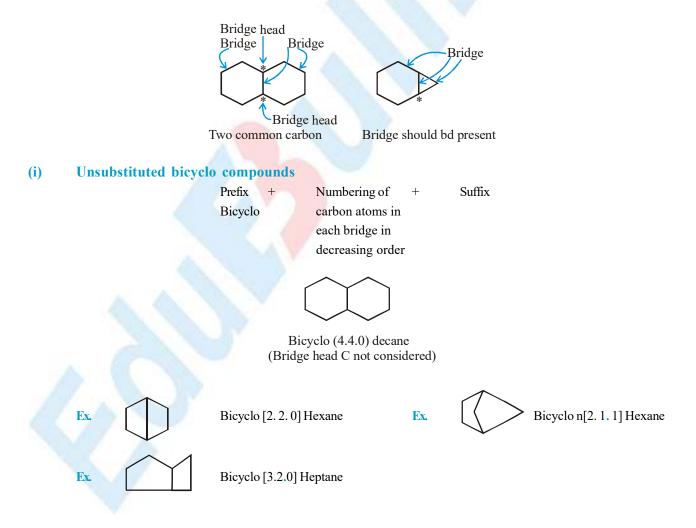
(xiii) Esters


(xiv) Amides

Benzamide

4-Methyl phenyl ethanoate

Ex. Write IUPAC name of the aromatic compounds

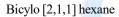

(ii) CH₂OCH₃

Sol. (i) 2-methyl -3-phenylpropanal,

(ii) Methoxyphenylmethane (Benzylmethyl ether)

Nomenclalture of Bicyclo Compounds

Bicyclo compounds : If two rings are fused at two common carbon atoms then compound are known as bicyclic compound.


(ii) Substituted bicyclo [Bicyclo with substitution or functional group]

In substituted bicyclo compounds numbering starts from a bridge head carbon atom and proceeds towards longest bridge then small bridge & then smallest bridge.

Ex. $2 + \frac{1}{1000} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{100$

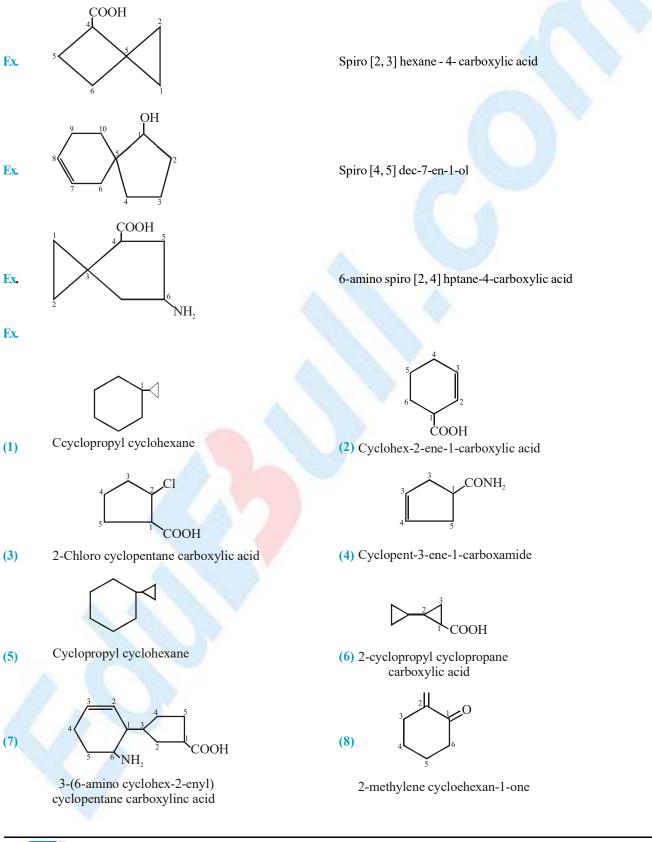
2-Chloro bicylo [2.2.1] heptane

bicylo [2,2,1]heptane-7-carboxylic acid

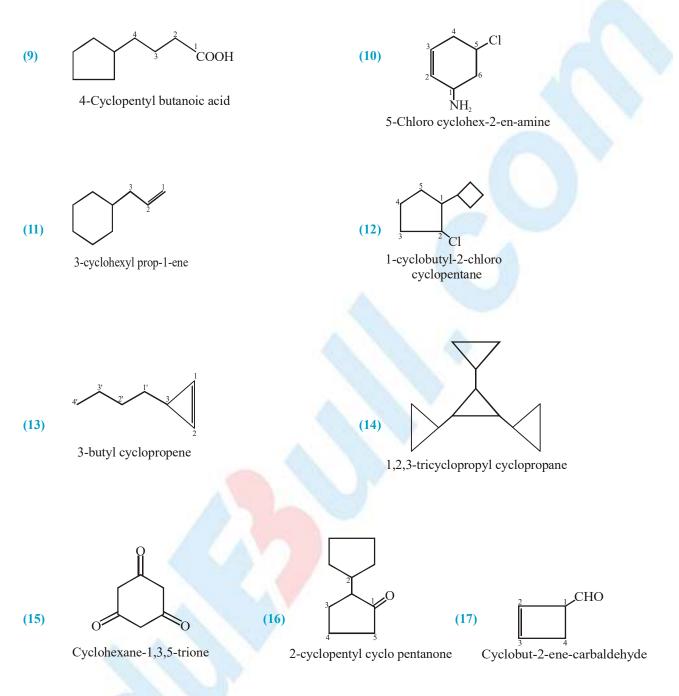

Bicyclo [2,1,1] hexane-5-carboxylic acid

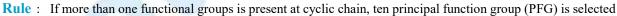
F.G. is preferred over double bond. Bicylo [3,2,2] dec-9-en-carboxylic acid

Bicylo [3.2.2] non-8-ene-6-carboxylic acid

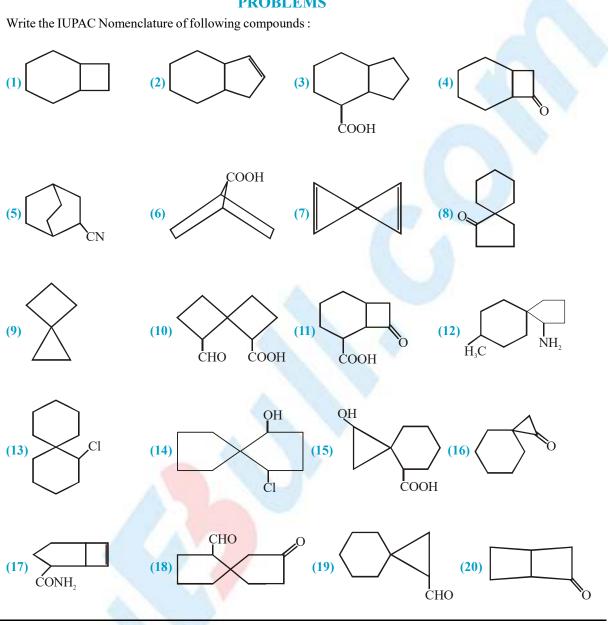

Nomenclature of Spiro Compounds

Spiro compound – Two cyclic rings are fused at one common carbon (only one bridge head)




Rule of numbering : In spiro compounds numbering starts from carbon of small ring which is next to spiro carbon proceeds towards other carbon atoms of smaller ring then towards larger rings via spiro carbon atom.

NOMENCLATURE OF ORGANIC COMPOUND



2-formyl cyclobutane carboxylic acid

PROBLEMS

ANSWERS

- (1) bicyclo [4.2.0] octane
- (3) bicyclo [4.3.0] nonane2-carboxylic acid
- (5) bicyclo [2.2.2] octane-2-carbnitrile
- (7) spiro [2.2.0] penta-1, 4-diene
- (9) spiro [2.3] hexane
- (11) 8-oxo bicyclo [4.2.0] octane-2-carboxylic acid
- (13) 1-chloro spiro [5.5] undecane
- (15) 1-hydroxy spiro [2.5] octane-4-carboxylic acid
- (17) bicyclo [3.2.0] hept-6-ene-2-carboxamide
- (19) spiro [2.5] octane-1-carbaldehyde

- (2) bicyclo [4.3.0] non-7-ene
- (4) bicyclo [4.2.0] octane-7-one
- (6) bicyclo [2.2.1] heptane-7-carboxylic acid
- (8) spiro [4.5] decan-1-one
- (10) 5-formyl spiro [3.3] heptane-1-carboxylic acid
- (12) 8-methyl spiro [4.5] decan-1-amine
- (14) 4-chloro spiro [4.4] nonan-1-ol
- (16) spiro [2.5] octan-1-one
- (18) 7-oxo spiro [4.4] nonane-1-carbaldehyde
- (20) bicyclo [2.2.0] hexan-2-one

Functional Group	Structure	Prefix	Suffix
Carboxylic acid	0 ■ −C−OH	Carboxy	- oic acid
Sulphonic acid	-SO ₃ H	Sulpho	sulphonic acid
Ester	O II -C-OR	Alkoxy carbonyl	alkyloate
Acid chloride	0 " -C-C1	Chloroformyl or Chlorocarbonyl	- oyl chloride
Acid amide	O II -C-NH ₂	Carbamoy1/Amido	- amide
Carbonitrile/Cyanide	$-C \equiv N$	Cyano	nitrile
Aldehyde	О -С-Н	Formyl or Oxo	- al
Ketone	0 - - -	Keto or oxo	- one
Alcohol	–OH	Hydroxy	- ol
Thio alcohol	-SH	Mercapto	thiol
Amine	-NH ₂	Amine	amine
Ether	-O-R	Alkoxy	-
Oxirane	-C-C- 0	Epoxy	-
Nitro derivative	$-NO_2$	Nitro	-
Nitroso derivative	–NO	Nitroso	-
Halide	-X	Halo	-
Double bond	$\mathbf{C} = \mathbf{C}$	-	ene
Triple bond	$C \equiv C$	-	yne

The order of priority of functional groups used in IUPAC nomenclature of organic compounds.

