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1. WAVES :

Waves is distributed energy or distributed "disturbance (force)"

• Following points regarding waves :
1. The disturbance (force) is transmitted from one point to another.
2. The energy is transmitted from one point to another.
3. The energy or distrubance passes in the form of wave without any net displacement of medium.
4. The oscillatory motion of preceding particle is imparted to the adjacent particle following it.
5. We need to keep creating disturbance in order to propagate wave (energy or disturbance) continuously.

(a) Waves classification
The waves are classified under two high level headings :

1. Mechanical waves : The motion of the particle constituting the medium follows mechanical laws i.e.
Newton's laws of motion. Mechanical waves originate from a distrubance in the medium (such as a stone
dropping in a pond) and the disturbance propagates through the medium. The force between the atoms
in the medium are responsible for the propagation of mechanical waves. Each atom exerts a force on the
atoms near it, and through this force the motion of the atom is transmitted to the others. The atoms in
the medium do not experience any net displacement.
Mechanical waves is further classified in two categories such that
1. Transverse waves (waves on a string)
2. Longitudnal waves (sound waves)

2. Non Mechanical waves : These are electro magnetic waves. The electromagnetic waves do not require
a medium for propagation. Its speed in vacuum is a universal constant. The motion of the electromagnetic
waves in a medium depends on the electromagnetic properties of the medium.
Transverse waves
If the disturbance travels in the x direction but the particles move in a direction, perpendicular to the x
axis as the wave passes it is called a transverse waves.
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Consider a sinusoidal harmonic wave travelling through a string and the motion of a particle as shown in
the figure Ist (only one unit of wave shown for illustration purpose). Since the particle is displaced from its
natural (mean) position, the tension in the string arising from the deformation tends to restore the
position of the particle. On the other hand, velocity of the particle (kinetic energy) move the particle
farther is zero. Therefore, the particle is pulled down due to tension towards mean position. In the
process, it acquires kinetic energy (greater speed) and overshoots the mean position in the downward
direction. The cycle of restoration of position continues as vibration (oscillation) of particle takes place.
Longitudinal waves
Longitudinal waves are characterized by the direction of vibration (disturbance) and wave motion. They
are along the same direction. It is clear that vibration in the same direction needs to be associated with
a "restoring" mechanism in the longitudinal direction.

(b) Mathematical description of waves
We shall attempt here to evolve a mathematical model of a travelling transverse wave. For this, we
choose a specific set up of string and associated transverse wave travelling through it. The string is tied
to a fixed end, while disturbance is imparted at the free end by up and down motion. For our purpose, we
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consider that pulse is small in dimension; the string is light, elastic and homogeneous. The assumptions
are required as we visualize a small travelling pulse which remains undiminished when it moves through
the strings. We also assume that the string is long enough so that our observation is not subjected to
pulse reflected at the fixed end.
For understanding purpose, we first consider a single pulse as shown in the figure (irrespective of
whether we can realize such pulse in practice or not). Our objective here is to determine the nature of a
mathematical description which will enable us to determine displacement (disturbance) of string as pulse
passes through it. We visualize two snap shots of the travelling pulse at two close time instants "t" and
"t + t". The single pulse is moving towards right in the positive x-direction.
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The vibration and wave motion are at right angle to each other.
Three position along x-axis named "1", "2" and "3" are marked with three vertical dotted lines. At either of
two instants as shown, the positions of string particles have different displacements from the undisturbed
position on horizontal x-axis. We can conclude from this observation that displacement in y-direction is a
function of positions of particle in x-direction. As such, the displacement of a particle constituting the
string is a function of "x".
Let us now observe the positions of a given particle, say "1". It has certain positive displacement at time
t = t, At the next snapshot at t = t  + t, the displacement has reduced to zero. The particle at "2" has
maximum displacement at t = t, but the same has reduced at t = t + t. The third particle at "3' has
certain positive displacement at t = t, At t = t + t, it acquires additional positive displacement and
reaches the position of maximum displacement. From these observation, we conclude that displacement
of a particle at any position along the string is a function of "t".
Combining two observations, we conclude that displacment of a particle is a function of both position of
the particle along the string and time.

y = f (x, t)
We can further specify the nature of the mathematical function by association the speed of the wave in
our consideration. Let "v" be the constant speed with which wave travels from the left end to the right
end. We notice that wave function at a given position of the string is a function of time only as we are
considering displacement at a particular value of "x". Let us consider left hand end of the string as the
origin of reference (x = 0 and t = 0). The displacement in y-direction (disturbance) at x = 0 is a function
of time, "t" only :

y = f(t) = A sin t
The disturbance travels to the right at constant speed "v'. Let it reaches a point specified as x = x after
time "t". If we visualize to describe the origin of this disturbance at x = 0, then time elapsed for the
distrubance to move from the origin (x = 0) to the point (x = x) is "x/v". Therefore, if we want to use the
function of displacement at x = 0 as given above, then we need to subtract the time elapsed and set the
equation is :
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y(x, t) = g(x – vt)
using any fixed value of t (i.e. at any instant), this shows shape of the string.
If the wave is travelling in –x direction, the wave equation is written as

y (x, t) = f t
x

v
( )
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The quantity x – vt is called phase of the wave function. As phase of the pulse has fixed value
x – vt  = const.

Taking the derivative w.r.t. time 
dx

dt
v

where v is the phase velocity although often called wave velocity. It is the velocity at which a particular
phase of the distrubance travels through space.
In order for the function to represent a wave travelling at speed v, the quantities x, v and t must appear
in the combination (x + vt) or (x – vt). Thus (x – vt)2 is acceptable but x2 – v2 t2 is not.

(c) Describing Waves :
Two kinds of graph may be drawn displacement - distance and displacement-time.
A displacement-distance graph for a transverse mechanical waves shows the displacement y of the
vibrating particles of the transmitting medium at different distance x from the source at a certain instant
i.e. it is like a photograph showing shape of the wave at that particular instant.
The maximum displacement of each particle from its undisturbed position is the amplutude of the wave.
In the figure 1, it OA or OB.
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The wavelength  of a wave is generally taken as the distance between two successive crests or two
successive trough. To be more specific, it is the distance between two consecutive points on the wave
which have same phase.
A displacement-time graph may also be drawn for a wave motion, showing how the displacement of one
particle at a particular distance from the source varies with time. If this is simple harmonic variation then
the graph is a sine curve.

• Wave Length, Frequency, Speed
If the source of a wave makes f vibrations per second, so they will the particles of the transmitting
medium. That is, the frequency of the waves equals frequency of the source.
When the source makes one complete vibration, one wave is generated and the disturbance spreads out
a distance  from the source. If the source continues to vibrate with constant frequency f, then f waves
will be produced per second and the wave advances a distance f  in one second. If v is the wave speed
then

v = f 
This relationship holds for all wave motions.

Frequency depends on source (not on medium), v depends on medium (not on source frequency), but
wavelength depend on both medium and source.

(d) Initial Phase :
At x = 0 and t = 0, the sine function evaluates to zero and as such y-displacement is zero. However, a
wave form can be such that y-displacement is not zero at x =0 and t = 0. In such case, we need to
account for the displacement by introducting an angle like :

y(x,t) = Asin (kx – t + )
where "" is initial phase. At x = 0 and t = 0.

y(0, 0) = A sin ()
The measurement of angle determines following two aspects of wave form at x = 0, t = 0 : (i) whether
the displacement is positive or negative and (ii) whether wave form has positive or negative slope.

For a harmonic wave represented by sine function, there are two values of initial phase angle for
which displacement at reference origin (x = 0, t = 0) is positive and has equal magnitude. We know that
the sine values of angles in first and second quadrants are positive. A pair of initial phase angles, say 
= /3 and 2/3, correspond to equal positive sine values are :

sin = sin ( – )
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To choose the initial phase in between the two values /3 & 
2

3


. We can look at a wave motion in yet

another way. A wave form at an instant is displaced by a distance x in very small time interval t then
then speed to the particle at t = 0 & x = 0 is in upward +ve direction in further time t

(0,0)

v

2. PARTICLE VELOCITY AND ACCELERATION :

Particle velocity at a given position x = x is obtained by differentiating wave function with respect to
time "t". We need to differentiate equation by treating "x" as constant. The partial differentiation yields
particle velocity as :

vp = 

 t

y x t( , )  = 




t
A kx tsin( – )   = –A cos (kx – t)

We can use the property of cosine function to find the maximum velocity. We obtain maximum speed
when cosine function evaluates to "–1" :

 vpmax = A
The acceleration of the particle is obtained by differentiating expression of velocity partially with respect
to time :

  ap = 

t

vp  = 



 
t

A kx t{– cos( – )}  = –2 A sin (kx – t) = –2y

Again the maximum value of the acceleration can be obtained using property of sine function :
  apmax = 2A

3. DIFFERENT FORMS OF WAVE FUNCTION :
Different forms give rise to bit of confusion about the form of wave function. The forms used for
describing wave are :

y (x, t) = A sin (kx – t)
y(x, t) = A sin (t – kx + )

Which of the two forms is correct ? In fact, both are correct so long we are in a position to accurately
interpret the equation. Starting with the first equation and using trigonometric identity :

We have,
  A sin (kx – t) = A sin ( – kx + t) =  A sin (t – kx + )

Thus we see that two forms represent waves along at the same speed v
k








. They differ, however, in

phase. There is phase difference of "". This has implication on the waveform and the manner particle
oscillates at any given time instant and position. Let us consider two waveforms at x = 0, t = 0. The
slopes of the waveforms are :





x

y x t kA kx t( , ) cos( – )  = kA = a positive number

and




x

y x t kA t kx( , ) – cos( – )  = –kA = a negative number

Forms of wave functions
    

x
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y A kx t sin[ – ]

vp

O

y A t kx sin[ – ]
vp

O



Exchange of terms in the argument of sine function results in a phase difference of .
In the first case, the slope is positive and hence particle velocity is negative. It means particle is moving
from reference origin or mean position to negative extreme position. In the second case, the slope is
negative and hence particle velocity is positive. It means particle is moving from positive extreme
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position to reference origin or mean position. Thus two forms represent waves which differ in direction in
which particle is moving at a given position.
Once we select the appropriate wave form, we can write wave equation in other forms as given here :

y(x, t) = A sin (kx – t) = A sin k 






 
k

t
–x  = A sin 

2


( – )x vt

Further, substituting for "k" and "" in wave equation, we have :

y (x, t) = A sin 
2 2

2







x

T
t A

x t

T
– sin –






 





If we want to represent waveform moving in negative "x" direction, then we need to replace "t" by "–t".

4. THE LINEAR WAVE EQUATION :
By using wave function y = A sin (t – kx + ), we can describe the motion of any point on the string.
Any point on the string moves only vertically, and so its x coordinate remains constant. The transverse
velocity vy of the point and its transverse acceleration ay are therefore.

t

y

dt
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v
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y 
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 = A cos (t – kx + ) ...(1)
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v
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
 = 




2

2

y

t
 = –2A sin (t – kx + ) ..(2)

and hence
vy. max = A
ay.max = 2A

The transverse velocity and transverse acceleration of any point on the string do not reach their
maximum value simultaneously. Infact, the transverse velocity reaches its maximum value (A) when the
displacement y = 0, whereas the transverse acceleration reaches its maximum magnitudes (2A) when y
= ± A
further

dy

dx t cons t






  tan
 



y

x
= – kA cos (wt – kx + ) ...(3)

= 




2

2

y

x
 = – k2A sin (t – kx + ) ...(4)

From (1) and (3)



 


y

t k

y

x
 –

 vp = – vw × slope
i.e. if the slope at any point is negative, particle velocity and vice-versa, for a wave moving along
positive

x axis i.e. vw is positive.    
x1 x2

A

B
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For example, consider two points A and B on the y-curve for a wave, as shown. The wave is moving
along positive x-axis.
Slope at A is positive therefore at the given moment, its velocity is negative. That means it is coming
downward. Reverse is the situation for particle at point B.
Now using equation (2) and (4)
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This is known as the linear wave equation or diffential equation representation of the travelling wave
model. We have developed the linear wave equation from a sinusoidal mechanical wave travelling through
a medium. But it is much more general. The linear wave equation successfully describes waves on
strings, sound waves and also electromagnetic waves.

Thus, the above equation can be written as,









2

2
2

2

2

y

t
v

y

x
 ...(i)

The general solution of this equation is of the form
y(x, t) = f (ax ± bt) ...(ii)

Thus, any function of x and t which satisfies Eq. (i) or which can be written as Eq. (ii) represents a wave.
The only condition is that it should be finite everywhere and at all times. Further, if these conditions are
satisfied, then speed of wave (v) is given by,

v
coefficient of t

coefficient of x

b

a
 

Thus plus (+) sign between ax and bt implies that the wave is travelling along negative x-direction and
minus (–) sign shows that it is travelling along positive x-direction.

5. SPEED OF A TRANSVERSE WAVE ON A STRING
Consider a pulse travelling along a string with a speed v to the right. If the amplitude of the pulse is small
compared to the length of the string, the tension T will be approximately constant along the string. In
the reference frame moving with speed v to the right, the pulse in stationary and the string moves with
a speed v to the left. Figure shows a small segment of the string of length l. This segment forms part of
a circular arc of radius R. Instantaneously the segment is moving with speed v in a circular path, so it has
centripetal acceleration v2/R. The forces acting on the segment are the tension T at each end. The
horizontal component of these forces are equal and opposite and thus cancel. The vertical component of
these forces point radially inward towards the centre of the circular. arc. These radial forces provide
centripetal acceleration. Let the angle substended by the segment at centre be 2. The net radial force
acting on the segment is

R

 l
v

a
v

Rr 
2

O

(a)

v

v  l

 

T T

 R

O
(b)

Fig. (a) To obtain the speed v of a wave on a stretched string. It is convenient to describe the motion of
a small segment of the string in a moving frame of reference.
Fig. (b)  In the moving frame of reference, the small segment of length l moves to the left with speed v.
The net force on the segment is in the radial direction because the horizontal components of the tension
force cancel.

F T Tr  2 2sin 

Where we have used the approximation sin     for small .
If  is the mass per unit length of the string, the mass of the segment of length l is

m =  l = 2R (as  l = 2R)

From Newton's second law     Fr = ma = 
mv

R

2

or 2T = (2R) 
v

R

2







   v

T



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6. ENERGY CALCULATION IN WAVES :
(a) Kinetic energy per unit length

The velocity of string element in transverse direction is greatest at mean position and zero at the
extreme positions of waveform. We can find expression of transverse velocity by differentiating displacement
with respect to time. Now, the y-displacement is given by :

y = A sin (kx – t)
Differentiating partially with respect to time, the expression of particle velocity is :

v
y

tp 



 = – A cos (kx – t)

In order to calculate kinetic energy, we consider a small string element of length "dx" having mass per
unit length "". The kinetic energy of the element is given by :

dK dmv dx A kx tp 
1

2

1

2
2 2 2 2  cos ( – )

This is the kinetic energy associated with the element in motion. Since it involves squared of cosine

function, its value is greatest for a phase of zero (mean position) and zero for a phase of 

2

 (maximum
displacement).
Now, we get kinetic energy per unit length, "KL", by dividing this expression with the length of small string
considered :

K
dK

dx
A kx tL  

1

2
2 2 2 cos ( – )

• Rate of transmission of kinetic energy
The rate, at which kinetic energy is transmitted, is obtained by dividing expression of kinetic energy by
small time element, "dt" :

dK

dt

dx

dt
A kx t

1

2
2 2 2  cos ( – )

But, wave or phase speed, v, is time rate of position i.e. 
dx

dt
. Hence,

dK

dt
v A kx t

1

2
2 2 2  cos ( – )

Here kinetic energy is a periodic function. We can obtain average rate of transmission of kinetic energy
by integrating the expression for integral wavelengths. Since only cos2(kx – t) is the varying entity, we

need to find average of this quantity only. Its integration over intergal wavelengths give a value of " "
1

2
.

Hence, average rate of transmission of kinetic energy is :

dK

dt
v A v Aavg|   

1

2

1

2

1

4
2 2 2 2   

(b) Elastic potential energy
The elastic potential energy of the string element results as string element is stretched during its
oscillation. The extension or stretching is maximum at mean position. We can see in the figure that the
length of string element of equal x-length "dx" is greater at mean position than at the extreme. As a
matter of fact, the elongation depends on the slope of the curve. Greater the slope, greater is the
elongation. The string has the least length when slope is zero. For illustration purpose, the curve is
purposely drawn in such a manner that the elongation of string element at mean position is highlighted.

V
y

x
O

t = t

O

t t t  
vp

x

fig : The string element stretched most at equilibrium position
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Greater extension of string element corresponds to greater elastic energy. As such, it is greatest at
mean position and zero at extreme position. This deduction in contrary to the case of SHM in which
potential energy is greatest at extreme position and zero at mean position.

• Potential energy per unit length
When the string segment is stretched from the length dx to the length ds an amount of work = T (ds –
dx) is done. This is equal to the potential energy stored in the stretched string segment. So the potential
energy in this case is :

U = T (ds – dx)

ds
dy

x x + dx

Now ds dx dy ( )2 2

  

















dx
dy

dx
1

2

from the binomial expansion

so ds  dx + 
1

2

2
dy

dx
dx







U = T (ds – dx)  
1

2

2

T
y

x
dx












or the potential energy density

dU

dx
T

y

x










1

2

2



...(i)

dy

dx
 = kAcos (kx – t)

and T = v2 
Put above value in equation (i) then we get

dU

dx
A kx t

1

2
2 2 2 cos ( – )

• Rate of transmission of elastic potential energy
The rate, at which elastic potential energy is transmitted, is obtained by dividing expression of kinetic
energy by small time element, "dt". This expression is same as that for kinetic enegy.

dU

dt
v A kx t

1

2
2 2 2  cos ( – )

and average rate of transmission of elastic potential energy is :

dU

dt
v A v Aavg|   

1

2

1

2

1

4
2 2 2 2   

(c) Mechanical energy per unit length
Since the expression elastic potential energy is same as that of kinetic energy, we get mechanical
energy expression by multiplying expression of kinetic energy by "2". The mechanical energy associated
with small string element, "dx", is :

dE = 2xdK = 2
1

2
2x dmvp  = dx2A2cos2 (kx – t)

Similarly, the mechanical energy per unit length is :

)t–kx(cosA
2

1
x2

dx

dE
E 222

L   = 2 A2 cos2 (kx – t)

(d) Average power transmitted
The average power transmitted by wave is equal to time rate of transmission of mechanical energy over
integral wavelengths. It is equal to :

P
dE

dt
v A v Aavg avg   | 2

1

4

1

2
2 2 2 2   

If mass of the string is given in terms of mass per unit volume, "", then we make appropriate change in
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the derivation. We exchange "" by "s" where "s" is the cross section of the string :

P sv Aavg 
1

2
2 2 

(e) Energy density
Since there is no loss of energy involved, it is expected that energy per unit length is uniform throughout
the string. As much energy enters that much energy goes out for a given length of string. This average
value along unit length of the string length is equal to the average rate at which energy is being
transferred.
The average mechanical energy per unit length is equal to integration of expression over integral wavelength

EL|avg = 2x
1

4
 v2 A2 = 

1

2
2 2 v A

We have derived this expression for harmonic wave along a string. The concept, however, can be
extended to two or three dimensional transverse waves. In the case of three dimensional transverse
waves, we consider small volumetric element. We, then, use density, ,  in place of mass per unit length,
. The corresponding average energy per unit volume is referred as energy density (u) :

u vw A
1

2
2 2

(f) Intensity
Intensity of wave (I) is defined as power transmitted per unit cross section area of the medium :

22
2

2 Avw
2

1

s2

A
svI 

Intensity of wave (I) is a very useful concept for three dimensional waves radiating in all direction from
the source. This quantity is usually referred in the context of light waves, which is transverse harmonic
wave in three dimensions. Intensity is defined as the power transmitted per unit cross sectional area.
Since light spreads uniformly all around, intensity is equal to power transmitted, divided by spherical
surface drawn at that point with source at its center.

Phase difference between two particles in the same wave :
The general expression for a sinusoidal wave travelling in the positive x direction is

y(x, t) = A sin (t – kx)
Eqn of Particle at x1 is given by y1 = A sin (t – kx1)
Eqn of particle which is at x2 from the origin

y2 = Asin (t – kx2)
Phase difference between particles is k(x2 – x1) = 

Kx =  x  

k

7. PRINCIPLE OF SUPERPOSITION :

This principle defines the displacement of a medium particle when it is oscillating under the influence of
two or more than two waves. The principle of superposition is stated as :

"When two or more waves superpose on a medium particle than the resultant displacement of that
medium particle is given by the vector sum of the individual displacements produced by the component
waves at that medium particle independently."

Let y y y N

  
1 2, ,.......  are the displacements produced by N independent waves at a medium particle in

absence of others then the displacemnt of that medium, when all the waves are superposed at that
point, is given as

N321 y.......yyyy














If all the waves are producing oscillations at that point are collinear then the displacement of the medium
particle where superposition is taking place can be simply given by the algebric sum of the individual
displacement. Thus we have

y = y1 + y2 + ..............+yN
The above equation is valid only if all individual displacements y1, y2 ........... yN are along same straight
line.
A simple example of superposition can be understood by figure shown. Suppose two wave pulses are
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travelling simultaneously in opposite directions as shown. When they overlap each other the displacement
of particle on string is the algebric sum of the two displacement as the displacements of the two pulses
are in same direction. Figure shown (b) also shows the similar situation when the wave pulses are in
opposite side.

y1

y2

y1

v
y2

v

x

y

y1

v

y2

v

x

y

y1

y2

y1

v
y2

v

x

y

 
y1

v

y2

v

x

y

v

v

y  + y1 2 v

v

(a) Applications of Principle of Superposition of Waves
There are several different phenomenon which takes place during superposition of two or more wave
depending on the wave characteristics which are being superposed. We'll discuss some standard
phenomenons, and these are :
(1) Interference of Wave
(2) Stationary Waves
(3) Beats
(4) Lissajou's Figures (Not discussed here in detail.)
    Lets discuss these in detail.

(b) Interference of  Waves
Suppose two sinusoidal waves of same wavelength and amplitude travel in same direction along the same
straight line (may be on a stretched string) then superposition principle can be used to define the
resultant displacement of every medium particle. The resultant wave in the medium depends on the
extent to which the waves are in phase with respect to each other, that is, how much one wave form is
shifted from the other waveform. If the two waves are exactly in same phase, that is the shape of one
wave exactly fits on to the other wave then they combine to double the displacement of every medium
particle as shown in figure (a). This phenomenon we call as constructive interference. If the superposing
waves are exactly out of phase or in opposite phase then they combine to cancel all the displacements
at every medium particle and medium remains in the form of a straight line as shown in figure (b)

y

x

A

–A

Wave I

y

x

A

–A

y

x

A

Wave II

y

x

+A

–A
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y

x

2A

–2A

Resultant
Wave

(a) 

y

x

(b) 

This phenomenon we call destructive interference. Thus we can state that when waves meet, they
interfere constructively if they meet in same phase and destructively if they meet in opposite phase. In
either case the wave patterns do not shift relative to each other as they propagates. Such superposing
waves which have same form and wavelength and have a fixed phase relation to each other, are called
coherent waves. Sources of coherent waves are called coherent source. Two indepedent sources can
never be coherent in nature due to practical limitations of manufacturing process. Generally all coherent
sources are made either by spliting of the wave forms of a single source or the different sources are fed
by a single main energy source.

In simple words interference is the phenomenon of superposition of two coherent waves travelling in
same direction.

We've discussed that the resultant displacement of a medium particle when two coherent waves
interfere at that point, as sum or difference of the individual displacements by the two waves if they are
in same phase (phase difference = 0, 2, .....) or opposite phase (phase difference = , 3,.....)
respectively. But the two waves can also meet at a medium particle with phase difference other then 0
or 2, say if phase difference  is such that 0 <  < 2, then how is the displacement of the point of
superposition given ? Now we discuss the interference of waves in details analytically.

(c) Analytical Treatment of Interference of Waves

S1

S2

x1

x2

A t kx1 sin( ) 

A t kx2 sin( ) 

y A t kx2 2 2 sin( )

y A t kx1 1 1 sin( )

Interference implies super position of waves. Whenever two or more than two waves superimpose each
other they give sum of their individual diplacement.
Let the two waves coming from sources S1 & S2 be

y1 = A1 sin ( t + kx1 )
y2 = A2 sin (t + kx2) respectively.

Due to superposition
ynet = y1 + y2

ynet = A1 sin ( t + kx1) + A2 sin (t + kx2)
Phase difference between y1 & y2 = k(x2 – x1)
i.e.,  = k(x2 – x1)

As  = x
2





(where x = path difference &  = phase difference)

Anet  = A A A A1
2

2
2

1 22  cos

 A A A A Anet
2

1
2

2
2

1 22   cos

   Inet = I1 + I2 + cosII2 21   (as I  A2)

When the two displacements are in phase, then the resultant amplitude will be sum of the two amplitude
& Inet will be maximum, this is known of constructive interference.
For Inet to be maximum

cos = 1     = 2n where n = {0,1,2,3,4,5...........}
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2
2




x n     x = n

For constructive interference

Inet = 2
21 )II( 

When I1 = I2 = I
Inet = 4 I
Anet = A1  + A2
When superposing waves are in opposite phase, the resultant amplitude is the difference of two amplitudes
& Inet is minimum; this is known as destructive interference.
For Inet to be minimum,

cos  = – 1
 = (2n + 1)  where n = {0,1,2,3,4,5...........}

2


x  = (2n + 1)   x = 
2

λ
1)(2n 

For destructive interfence

Inet = ( – )I I1 2
2

If I1 = I2
Inet = 0
Anet = A1 – A2

Ratio of Imax & Imin = 
( )

( – )

I I

I I

1 2
2

1 2
2



Generally,

Inet = I1 + I2 + cosII2 21

If I1 = I2 = I
Inet = 2I + 2Icos

Inet = 2I(1 + cos ) = 4Icos2 

2

8. REFLECTION AND TRANSMISSION IN WAVES :
1. When a pulse travelling along a string reaches the end, it is reflected. If the end is fixed as shown in

figure (a), the pulse returns inverted. This is bacause as the leading edge reaches the wall, the string
pulls up the wall. According to Newton's third law, the wall will exert an equal and opposite force on the
string as all instants. This force is therefore, directed first down and then up. It produces a pulse that is
inverted but otherwise identical to the original.
The motion of free end can be studied by letting a ring at the end of string sliding smoothly on the rod.
The ring and rod maintain the tension but exert no transverse force.
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(a) (b)

Reflection of wave pulse (a) at a fixed end 
of a string and (b) at a free end. Time 
increases from top to bottom in each 
figure.

When a wave arrives at this free end, the ring slides the rod. The ring reaches a maximum displacement.
At this position the ring and string come momentarily to rest as in the fourth drawing from the top in
figure (b). But the string is stretched in this position, giving increased tension, so the free end of the
string is pulled back down, and again a reflected pulse is produced, but now the direction of the
displacement is the same as for the initial pulse.

2. The formation of the reflected pulse is similar to the overlap of two pulses travelling in opposite directions.
The net displacement at any point is given by the principle of superposition.

 

(a) (b)
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Fig (a) : shows two pulses with the same shape, one inverted with respect to the other, travelling in
opposite directions. Because these two pulses have the same shape the net displacement of the point
where the string is attached to the wall is zero at all times.
Fig (b) : shows two pulses with the same shape, travelling in oppoiste directions but not inverted
relative to each other. Note that at one instant, the displacement of the free end is double the pulse
height.

9. REFLECTION AND TRANSMISSION BETWEEN TWO STRING :
Here we are dealing with the case where the end point is neither completely fixed nor completely free to
move As we consider an example where a light string is attached to a heavy string as shown is figure a.
If a wave pulse is produced on a light string moving towards the friction a part of the wave is reflected
and a part is transmitted on the heavier string the reflected wave is inverted with respect to the original
one.

v
T

1
1




v
T

2
2




v > v1 2

y A t k x i 1sin( – )

( , )v1 1

( , )v2 2
        

At

Ar

v1 y Ar t k x  sin( ) 1

v2 y At t k x sin( – ) 2

figure (a)

On the other hand if the wave is produced on the heavier string which moves toward the junction a part
will the reflected and a part transmitted, no inversion in waves shape will take place.

The wave velocity is smaller for the heavier string lighter string

v2

2
1

v1
y A t k x i 1sin( – )

P

P At

v2
v1

y Ar t k x sin( ) 1 y At t k x sin( – ) 2

figure : (b)

Ar

Now to find the relation between Ai, Ar, At we consider the figure (b)
Incident Power = Reflected Power + Transmitted Power

Pi  = Pr + Pt

22
2

t
22

11
2

r
22

11
2

i
22 vAf2vAf2vAf2  ...(i)

Put 1 = 
T

v1
2  and 2 = 

T

v2
2

in equation (i) their

A

v

A

v

A

v
i r t
2

1

2

1

2

2

 
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2
t

2

12
r

2
i A

v

v
AA  .......(ii)

Maximum displacement of joint particle P (as shown in figure) due to left string
= Ai + Ar

Maximum displacement of joint particle due to right string = At

At the boundary (at point P) the wave must be continuous, that is there are no kinks in it. Then we must
have Ai + Ar = At ...(iii)
from equation (ii) & (iii)

Ai – Ar  = 
v

v
A t

1

2
...(iv)

from eq. (iii) & (iv)

At = 
2 2

1 2

v

v v
A i











Ar = 
v v

v v
A i

2 1

1 2

–












10. STANDING WAVES :
In previous section we've discussed that when two coherent waves superpose on a medium particle,
phenomenon of interference takes place. Similarly when two coherent waves travelling in opposite
direction superpose then simultaneous interference if all the medium particles takes place. These waves
interfere to produce a pattern of all the medium particles what we call, a stationary wave. If the two
interfering waves which travel in opposite direction carry equal energies then no net flow of energy takes
place in the region of superposition. Within this region redistribution of energy takes place between
medium particles. There are some medium particles where constructive interference takes place and
hence energy increases and on the other hand there are some medium particles where destructive
interference takes place and energy decreases. Now we'll discuss the stationary waves analytically.

Let two waves of equal amplitude are travelling in opposite direction along x-axis. The wave equation
of the two waves can be given as

y1 = A sin (t – kx) [Wave travelling in +x direction] ...(1)
and y2 = A sin (t + kx) [Wave travelling in –x direction] ...(2)
When the two waves superpose on medium particles, the resultant displacement of the medium particles
can be given as

y = y1 + y2

or y = A sin (t – kx) + A sin (t + kx)
or y = A [sint cos kx – cos t sin kx + sin t cos kx + cos t sin kx]
or y = 2A cos kx sin  t ...(3)
Equation (3) can be rewritten as

y = R sin t ...(4)
Where R = 2 A cos kx ...(5)
Here equation (4) is an equation of SHM. It implies that after superposition of the two waves the medium
particles executes SHM with same frequency  and amplitude R which is given by equation (5) Here we
can see that the oscillation amplitude of medium particles depends on x i.e. the position of medium
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particles. Thus on superposition of two coherent waves travelling in opposite direction the resulting
interference pattern, we call stationary waves, the oscillation amplitude of the medium particle at
different positions is different.
At some point of medium the resultant amplitude is maximum which are given as
R is maximum when cos kx = ± 1

or
2


x N [N  I]

or x = 
N
2

or x = 0, 

2

, , 
3

2


.....

and the maximum value of R is given as
Rmax= ± 2 A ...(6)

Thus in the medium at position x = 0, 

2

, , 
3

2


, ........... the waves interfere constructively and the

amplitude of oscillations becomes 2A. Similarly at some points of the medium, the waves interfere
destructively, the oscillation amplitude become minimum i.e. zero in this case. These are the points
where R is minimum, when

cos kx = 0

or
2

)1N2(
x2 





or x = (2N + 1) 
4


[N  I]

or x 
  
4

3

4

5

4
, , ...........

and the minimum value of R is given as
Rmin = 0 [7]

Thus in the medium at position x = 

4

, 
3

4


, 

5

4


......... the waves interfere destructively and the

amplitude of oscillation becomes zero. These points always remain at rest. Figure (a) shows the oscillation
amplitude of different medium particles in a stationary waves.

figure (a)
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In figure (a) we can see that the medium particles at which constructive interference takes place are
called antinodes of stationary wave and the points of destructive interference are called nodes of
stationary waves which always remain at rest.
Figure (b) explain the movement of medium particles with time in the region where stationary waves are
formed. Let us assume that at an instant t = 0 all the medium particles are at their extreme positions as
shown in figure - (b - 1). Here points ABCD are the nodes of stationary waves where medium particles

remains at rest. All other starts moving towards their mean positions and t = T / 4  all particles cross their

mean position as shown in figure (b – 3), you can see in the figure that the particles at nodes are not
moving. Now the medium crosses their mean position and starts moving on other side of mean position
toward the other extreme position. At time t = T/2, all the particles reach their other extreme position as
shown in figure (b - 5) and at time t = 3T/4 again all these particles cross their mean position in opposite
direction as shown in figure (b - 7).

figure (b)
Based on the above analysis of one complete oscillations of the medium particles, we can make some
interference for a stationary waves. These are :
(i) In oscillations of stationary wave in a region, some points are always at rest (nodes) and some
oscillates with maximum amplitudes (antinodes). All other medium particles oscillate with amplitudes less
then those of antinodes.
(ii) All medium particles between two successive nodes oscillate in same phase and all medium particles
on one side of a node oscillate in opposite phase with those on the other side of the same node.
(iii) In the region of a stationary wave during one complete oscillation all the medium particles come in
the form of a straight line twice.
(iv) If the component wave amplitudes are equal, then in the region where stationary wave is formed, no
net flow of energy takes place, only redistribution of energy takes place in the medium.

(a) Different Equation for a Stationary Wave
Consider two equal amplitude waves travelling in opposite direction as

y1 = A sin (t – kx) ...(11)
and y2 = A sin (t + kx) ...(12)
The result of superposition of these two waves is

y = 2A cos kx sin t ...(13)
Which is the equation of stationary wave where 2A cos kx represents the amplitude of medium particle
situated at position x and sin t is the time sinusoidal factor. This equation (13) can be written in several
ways depending on initial phase differences in the component waves given by equation (11)) can (12). If
the superposing waves are having an initial phase difference , then the component waves can be
expressed as

y1 = A sin (t – kx) ...(14)
y2 = – A sin (t – kx) ...(15)
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Superposition of the above two waves will result

y = 2A sin kx cos t ...(16)

Equation (16) is also an equation of stationary wave but here amplitude of different medium particles in

the region of interference is given by

R = 2A sin kx ...(17)

Similarly the possible equations of a stationary wave can be written as

y = A0 sin kx cos ( t + ) ....(18)

y = A0 cos kx sin (t + ) ...(19)

y = A0 sin kx sin (t + ) ...(20)

y = A0 cos kx cos (t + ) ...(21)

Here A0 is the amplitude of antinodes. In a pure stationary wave it is given as

A0 = 2A

Where A is the amplitude of component waves. If we care fully look at equation (18) to (21), we can see

that in equation (18) and (20), the particle amplitude is given by

R = A0 sin kx ...(22)

Here at x = 0, there is nodes as R = 0 and in equation (19) and (21) the particle amplitude is given as

R = A0 cos kx ...(23)

Here at x = 0, there is an antinode as R = A0. Thus we can state that in a given system of co-ordinates

when origin of system is at a node we use either equation (18) or (20) for analytical representation of a

stationary wave and we use equation (19) or (21) for the same when an antinode is located at the origin

of system.

(b) Energy of standing wave in one loop

When all the particles of one loop are at extreme position then total energy in the loop is in the form of

potential energy only when the particles reaches its mean position then total potential energy converts

into kinetic energy of the particles so we can say total energy of the loop remains constant

Total kinetic energy at mean position is equal to total energy of the loop because potential energy at

mean position  is zero.

Small kinetic energy of the particle

which is in element dx is x

   / 2

dx

d (KE) = 
1

2
2dmv

dm =  dx

Velocity of particle at mean position

= 2A sin kx 

then d (KE) = 
1

2
dx . 4A2 2 sin2kx    d (KE) = 2A22 . sin2kx dx

 



2/

0

222 kxdxsinA2)E.K(d

Total K.E = A kx dx2 2

0

2

1 2 


( – cos )
/

  





A x

kx

k
2 2

0

2
2

2
 



–
sin

/

 = 
1

2
2 2  A
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11. STATIONARY WAVES IN STRINGS :
(a) When both end of string is fixed :

A string of length L is stretched between two points. When the string is set into vibrations, a transverse
progressive wave begins to travel along the string. It is reflected at the other fixed end. The incident and
the reflected waves interfere to produce a stationary transverse wave in which the ends are always
nodes, if both ends of string are fixed.
Fundamental Mode
(a) In the simplest form, the string vibrates in one loop in which the ends are the nodes and the centre
is the antinode. This mode of vibration is known as the fundamental mode and frequency of vibration is
known as the fundamental frequency or first harmonic.

Since the distance between consecutive nodes is 

2

 L 
1

2
  1 = 2L

If f1 is the fundamental frequency of vibration, then the velocity of transverse waves is given as,

v f 1 1 or f
v

L1 2
 ...(i)

First Overtone
(b) The same string under the same conditions may also vibrate in two loops, such that the centre is also
the node

 L 
2

2
2   2 = L


2


2

If f2 is frequency of vibrations

 f
v v

L2
2

 


 f
v

L2  ...(ii)

The frequency f2 is known as second harmonic or first overtone.
Second Overtone
(c) The same string under the same conditions

may also vibrate in three segments.

 L 
3

2
3

 3
2

3
 L

If f3 is the frequency in this mode of vibration, then,

f
v

L3
3

2
 ...(iii)

The frequency f3 is known as third harmonic or second overtone.
Thus a stretched string vibrates with frequencies, which are integral multiples of the fundamental
frequencies. These frequencies are known as harmonics.

The velocity of transverse wave in stretched string is given as v
T




. Where T = tension in the string.

 = linear density or mass per unit length of string. If the string fixed at two ends, vibrates in its
fundamental mode, then

f
L

T


1

2 
....(17)
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In general f = n T

2 
nth harmonic

(n – 1)th overtone

In general, any integral multiple of the fundamental frequency is an allowed frequency. These higher
frequenceis are called overtones. Thus, v1 = 2v0 is the first overtone, v2 = 3v0 is the second overtone
etc. An integral multiple of a frequency is called its harmonic. Thus, for a string fixed at both the ends, all
the overtones are harmonics of the fundamental frequency and all the harmonics of the fundamental
frequency are overtones.

(b) When one end of the string is fixed and other is free :
free end acts as antinode

1.    / 4 f
T


1

4   fundamental or Ist harmonic

2.   3 4 / f
T


3

4   IIIrd harmonic or Ist overtone

In general : f
n T


( )2 1

4 
  ((2n + 1)th harmonic, nth overtone)

S.No. Travelling waves Stationary waves

1 These waves advance in a medium
with a definite velocity

These waves remain stationary between two
boundaries in the medium.

2 In these waves, all particles of the
medium oscillate with same frequency
and amplitude.

In these waves, all particles except nodes
oscillate with same frequency but different
amplitudes. Amplitude is zero at nodes and
maximum at antinodes.

3 At any instant phase of vibration
varies continuosly from one partic le
to the other i.e., phase difference
between two particles can have any
value between 
0 and 2  

At any instant the phase of all particles
between two successive nodes is the same,
but phase of particles on one side of a node
is opposite to the phase of particles on the
other side of the node, i.e, phase difference
between any two particles can be 
either 0 or 

4 In these wave, at no instant all the
particles of the medium pass through
their mean positions simultaneously.

In these waves all particles of the medium
pass through their mean position
simultaneously twice in each time period.

5 These waves transmit energy in the
medium.

These waves do not transmit energy in the
medium.




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SOLVED EXAMPLE
Ex.1 Given below are some examples of wave
motion. State in each case if the wave motion is
transverse, longitudinal or a combination of both:
(a) Motion of a kink in a longitudinal spring
produced by displacing one end of the spring
sideways.
(b) Waves produced in a cylinder containing a
liquid by moving its piston back and forth.
(c) Waves produced by a motorboat sailing in
water.
(d) Ultrasonic waves in air produced by a vibrating
quartz crystal.
Ans.
(a) Transverse and longitudinal
(b) Longitudinal
(c) Transverse and longitudinal
(d) Longitudinal

Ex.2 A wave travelling along a string is described
by, y(x, t) = 0.005 sin (80.0 x – 3.0 t), in which
the numerical constants are in SI units (0.005 m,
80.0 rad m–1, and 3.0 rad s–1). Calculate (a) the
amplitude, (b) the wavelength, and (c) the period
and frequency of the wave. Also, calculate the
displacement y of the wave at a distance x = 30.0
cm and time t = 20 s ?
Ans. On comparing this displacement equation with
Eq. (15.2), y (x, t ) = a sin (kx – t ),
we find
(a) the amplitude of the wave is 0.005 m = 5 mm.
(b) the angular wave number k and angular frequency
 are
k = 80.0 m–1 and  = 3.0 s–1

We then relate the wavelength  to k through Eq.

or




2

k

 = 1m0.80
2




 = 7.85 cm

(c) Now we relate T to ? by the relation

T = 1s0.3
2




and frequency, v = 1/T = 0.48 Hz The displacement y
at x = 30.0 cm and time t = 20 s is given by
y = (0.005 m) sin (80.0 × 0.3 – 3.0 × 20)

= (0.005 m) sin (–36 + 12)
= (0.005 m) sin (1.699)
= (0.005 m) sin (970) j 5 mm

Ex.3 A steel wire 0.72 m long hasa mass of
5.0 ×10–3 kg. If the wire is undera tension of 60 N,
what is the speed of transverse waves on the wire
Ans. Mass per unit length of the wire,

m72.0
kg100.5 3



= 6.9 ×10–3 kg m–1

Tension, T = 60 N

The speed of wave on the wire is given by

1
13

ms93
kgm109.6

N60T 










Ex.4 Estimate the speed of sound in air at
standard temperature and pressure. The mass of
1 mole of air is 29.0 ×10–3 kg.
Ans. We know that 1 mole of any gas occupies 22.4
litres at STP. Therefore, densityof air at STP is :
0 = (mass of one mole of air)/ (volume of one mole of

air at STP) 33

3

m104.22
kg100.29




= 1.29 kg m–3

According to Newton’s formula for the speedof sound
in a medium, we get for the speed of sound in air at
STP,

2/1

3

25

kgm29.1
Nm1001.1











 
 



 = 280 m s–1

Ex.5 A pipe, 30.0 cm long, isopen at both ends.
Which harmonic modeof the pipe rasonates a 1.1
kHz source? Willresonance with the same source
be observed if one end of the pipe is closed ?Take
the speed of sound in air as330 m s–1.
Ans. The first harmonic frequency is givenby

L21
1







 (open pipe)

where L is the length of the pipe. The frequencyof its
nth harmonic is:

L2
n

n


 , for n = 1, 2, 3, ... (open pipe)

First few modes of an open pipe are shown in fig.
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For L = 30.0 cm, v = 330 m s–1,

)m(6.0
)ms(330n 1

n


  = 550 n s–1

Clearly, a source of frequency 1.1 kHz will resonate at

v2, i.e. the second harmonic. Now if one end of the

pipe is closed (Fig. 15.15), it follows from Eq. (14.50)

that the fundamental frequency is

 L41
1







 (pipe closed at one end)and only

the odd numbered harmonics are present :

L4
5

,
L4

3
53





 , and so on.

For L = 30 cm and v = 330 m s–1, the fundamental

frequency of the pipe closed at one end is 275 Hz and

the source frequency corresponds to its fourth

harmonic. Since this harmonic is not a possible mode,

no resonance will be observed with the source, the

moment one end is closed.

Ex.6 Two sitar strings A and B playing the note

‘Dha’ are slightly out of tune and produce beats

of frequency 5 Hz. The tension of the string B is

slightly increased and the beat frequency is found

to decrease to 3 Hz. What is the originalfrequency

of B if the frequency of A is427 Hz ?

Ans. Increase in the tension of a string increases its

frequency. If the original frequency of B (B) were

greater than that of A (A ), further increase in B

should have resulted in an increase in the beat

frequency. But the beat frequency is found to

decrease. This shows that

B < A. Since A – B = 5 Hz, and A = 427 Hz,

we get B = 422 Hz.

Ex.7 A rocket is moving at a speed of 200 m s–1

towards a stationarytarget. While moving, it

emits a wave of frequency 1000 Hz. Some of the

sound reaching the target gets reflected back to

therocket as an echo. Calculate (1) thefrequency

of the sound as detected by the target and (2)

the frequency of the echo as detected by the

rocket.

Ans. (1) The observer is at rest and the source is

moving with a speed of 200 m s–1. Since this is

comparable with the velocity of sound, 330 m s–1, we

must use Eq. and not the approximate Eq. Since the

source is approaching a stationary target, 0 = 0, and

vs must be replaced by –s. Thus, we have

1
s

0 1















v = 1000 Hz × [1 – 200 m s–1 /330 m s–1]–1

  2540 Hz

(2) The target is now the source (because it is the

source of echo) and the rocket’s detector is now the

detector or observer (because it detects echo). Thus,

vs = 0 and vo has a positive value. The frequency of

the sound emitted by the source (the target) is v, the

frequency intercepted by the target and not v0.

Therefore, the frequency as registered by the rocket

is












 0'

= 2540Hz × 1

11

ms330
ms330ms200



 

  4080 Hz

(1)  = w0 
1

s

v
v

1












(2)  = v0  






 
v
v

1 s
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Exercise - I UNSOLVED PROBLEMS
Q.1 A string of mass 2.50 kg is under a tension of
200 N. The length of the stretched string is 20.0 m. If
the transverse jerk is struck at one end of the string,
how long does the disturbance take to reach the other
and? 

Q.2 A stone dropped from the top of a tower of
height 300 m high splashes into the water of a pond
near the base of the tower. When  is the splash heard
at the top given that the speed of sound in air is 340
m s-1 ?
( g = 9.8 m s-2 ).

Q.3 A steel wire has a length of 12.0 m and a mass
of 2.10 kg. What should be the tension in the wire so
that speed of a transverse wage on the wire  equals
the speed of sound in dry air at 20 oC = 343 m s-1.

Q.4 Use the formula = to explain why the speed of
sound in air
(a) is independent of pressure,
(b) increases with temperature,
(c) increases with humidity.

Q.5 You have learnt that a travelling wave in one
dimension is represented by a function y = f ( x,t) where
x and  t must appear in the combination x -  t or x +
 t, i.e. y = F ( x ±  t). Is the converse true ?
Examine if the following functions for y can possibly
represent a travelling wave:
(a) (x – t)2

(b) log [(x +t)/xo]
(c) exp [–(x + t)/xo]
(d) 1/(x + t)

Q.6 A bat emits ultrasonic sound of frequency 1000
kHz in air. If the sound meets a water surface, what
is the wavelength of (a) the reflected sound, (b) the
transmitted sound? Speed of sound in air is 340 m s-
1 and in water 1486 m s-1.

Q.7 A hospital uses an ultrasonic scanner to locate
tumours in a tissue. What is the wavelength os found
in the tissue in which the speed of sound is 1.7 km
s

–1
 ? The operating frequency of the scanner is 4.2

MHz.

Q.8 A transverse harmonic wave on a string is
described by y (x, t) = 3.0 sin
(36 t + 0.018 x + /4), where x and y are in cm.
and t in s. The positive direction of x is from left to
right.
(a) Is this a travelling wave or a stationary wave ?
(b) What are its amplitude and frequency ?
(c) What is the initial phase at the origin ?
(d) What is the least distance between two
successive crests in the wave ?

Q.9 For the wave described in Exercise 15.8, plot
the displacement (y) versus (t) graphs for  x=0, 2
and 4 cm. What are the shape of these graphs ? In
which as pacts does the oscillatory motion in traveling
wave differ from one point to another : amplitude,
frequency of phase ?

Q.10For the travelling harmonic wave
y(x,t) = 2.0 cos 2 ( 10t –0.0080 x + 0.35)
where x and y are in cm and t in  s. Calculate tha
phase difference between oscillatory motion of two
points separated by a distance of
(a) 4 m (b) 0.5 m, (c) /2, (d) 3/4

Q.11The transverse displacement of string (clamped
at its both ends) is given by
y(x,t) = 0.06 sin  cos (120t)
where and y are in  m and t in s. The length os the
string is 1.5 m and its mass is 3.0 x 10-2 kg.
Answer the following :
(a) Does the function represent a travelling wave or a
stationary wave?
(b) Interpret the wave as a superposition  of two
waves travelling in opposite directions. What are the
wavelength, frequency, and speed of each wave ?
(d) Determine the tension in the string.

Q.12 (i) For the wave on a string described in Exercise
15.11, do all the points on the string oscillate with
the same (a) frequency, (b) phases, (c) amplitude ?
Explain your answers. (ii) What is the amplitude of a
point 0.375 m away from one end ?

Q.13Given below are some functions of x and t to
represent the displacement (transverse or longitudinal)
of anelastic wave. State which of these represent (i)
a travelling wave, (ii) a stationary wave or (iii) none
at all:
(a) y = 2 cos (3x) sin (10t) (b) y =
(c) y = 3 sin (5x –0.5t) + cos (5x – 0.5t)
(d) y = cosx sin t + cos 2x sin 2t

Q.14A wire stretched between two rigid supports
vibrates in its fundamental mode with a frequency of
45 Hz. The mass of the wire is 3.5 x 10-2 kg and its
linear density is 4.0 x 10-2 kg m-1. What is (a) the
speed of a transverse wave on the string, and (b) the
tension in the string?

Q.15A meter- long tube open at one end, with a
movable piston at the other end, shows resonance
with a fixed frequency source ( a tuning fork of
frequency 340 Hz) when the tube length is 25.5 cm or
79.3 cm. Estimate the speed of sound in air at the
temperature of the experiment. The edge effects may
be neglected.
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Q.16A steel rod 100 cm long is clamped at its middle.
The fundamental frequency of longitudinal vibrations
of the rod are given tube 2.53 kHz. What is the speed
of sound in steel ?

Q.17A pipe 20 cm long is closed at one end. Which
harmonic mode of the pipe is resonantly excited by a
430 Hz source ? Will the same source be in resonance
with the pipe if both ends are open ? (speed of sound
in air is 340 m s)

Q.18Two sitar string A and B playing the note ‘Ga’
are slightly out of tune and produce beats of frequency
6 Hz. The tension in the string A is slightly reduced
and the beat frequency is found to reduce to 3 Hz. If
the original frequency of A is 324 Hz, what is the
frequency of B ?

Q.19Explain why (or how):
(a) in a sound wave, a displacement node is pressure
antinode and vice versa,
(b) bats can ascertain distances, directions, nature,
and sizes of the obstacles without any “eyes”,
(c) a violin note and sitar note may have the same
frequency, yet we can distinguish between the two
notes,
(d) solids can supports both longitudinal and transverse
wave, but only longitudinal waves can
propagate in gases, and
(e) the shape of a pulse gets distorted during
propagation in a dispersive medium.

Q.20A train, standing at the outer signal of a railway
station blows a whistle of frequency 400 Hz in still air.
(i) What is the frequency of the whistle for a platform
observer from the platform with a speed of 10 m s-1?
(ii) What is the speed of sound in each case ? The
speed of sound in still air can be taken as 340 M s-1.

Q.21A train , standing in a station-yard, blows a
whistle of frequency 400 Hz in still air. The wind starts
blowing in the  direction from the yard to the station
with at a speed of 10 m s-1. What are the frequency,
wavelength, and speed of sound  for an observer
standing on the station’s platform? Is the situation
exactly identical to the case when the air is still and
the observer runs towards the yard at a speed of 10
m s-1? The  speed of sound in still air can be taken as
340 m s-1.t

Q.22A travelling harmonic wave on a string is
described by

y(x,t) = 7.5 sin (0.0050x + 12t+/4)

(a) what are the displacement and velocity os
oscillation of a point at x = 1 cm, and t = 1 cm and
t = 1 s ? Is this velocity equal to the velocity of wave
propagation?
(b) Locate the points of the sting which have the
same transverse displacements and velocity as the
 x =1  cm point at t = 2 s, 5 s and 11 s.

Q.23A narrow sound pulse (for example, a short pip
by a whistle) is sent across a medium. (a) Does the
pulse have a definite (i) frequency, (ii) wavelength,
(iii) speed of propagation? (b) If the pulse rate is 1
after every 20 s,  (that is the whistle is blown for a
split of second after every 20 s), is the frequency os
the note produced by the whistle equal to 1.20 or
0.05 Hz ?

Q.24One end of a long string of linear mass density
8.0 × 10–3 kg m–1 is connected to an electrically
driven tuning fork of frequency 256 Hz. The other
end passes over a pulley and is tied to a pan
containing a mass of 90 kg. The pulley end absorbs
all the incoming energy so that reflected waves at
this end have negligible amplitude. At t = 0, the
left end (fork end) of the string x = 0 has zero
transverse displacement (y = 0) and is moving along
positive y-direction. The amplitude of the wave is
5.0 mm. Write down the transverse displacement y
as function of x and t that describes the wave on
the string.

Q.25A SONAR system fixed in a submarine operates
at a frequency 40.0 kHz. An enemy submarine moves
towards the SONAR with a speed of 360 km h-1. What
is the frequency of sound reflected by the submarine
? Take the speed of sound in water to be 1450 m s-1.

Q.26Earthquakes generate sound waves inside the
earth. Unlike a gas, the earth can experience both
transverse (S) and logitudinal (P) sound waves.
Typically the speed os S wave is about 4.0 km s-1,
and that of P wave is 8.0 km s-1. A seismograph
records P and S waves from an earthquake. The first
P wave arrives 4 min before the first S wave. Assuming
the waves travel in straight line, how far away does
the earthquake occur?

Q.27A bat is flitting about in a cave, navigating via
ultrasonic bleeps. Assume that the sound emission
frequency of the bat is 40 kHz. During one fast swoop
directly toward a flat wall surface, the bat is moving
at 0.03 times the speed of sound in air. What frequency
does the bat hear reflected off the wall?


