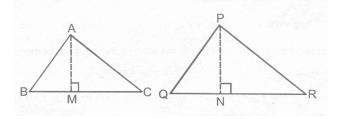
TRIANGLES

AREA OF TWO SIMILAR TRIANGLE

AREAS OF SIMILAR TRIANGLS :

Statement : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Given : Two triangles ABC and PQR such that $\triangle ABC \sim \triangle PQR$ [Shown in the figure]



To Prove : $\frac{at(ABC)}{at(PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$

Construction : Draw altitudes AM and PN of the triangle ABC an PQR.

Proof:

$$ar(ABC) = \frac{1}{2}BC \times AM$$

And
$$ar(PQT) = \frac{1}{2}QR \times PN$$

So,
$$\frac{an(ABQ)}{an(PQR)} = \frac{\frac{1}{2}BC \times AM}{\frac{1}{2}QR \times PN} = \frac{BC \times AM}{QR \times PN}$$
(i)

Now, in \triangle ABM and \triangle PQN,

- And $\angle B = \angle Q$ [As $\triangle ABC \sim \triangle PQR$]
- $\angle M = \angle N$ [90⁰ each]

So, $\triangle ABM \sim \triangle PQN$	[AA similarity criterion]
Therefore, $\frac{AM}{PN} = \frac{AB}{PQ}$	(ii)
Also, $\triangle ABC \sim \triangle PQR$	[Given]
So, $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$	(iii)
Therefore, $\frac{at(ABC)}{at(PQR)} = \frac{BC}{QR} \times \frac{AB}{PQ}$	[From (i) and (ii)]
$=\frac{AB}{PQ}\times\frac{AB}{PQ}$	[From (iii)]
$=\left(\frac{AB}{PQ}\right)^2$	

Now using (iii), we get

 $\frac{an(\Delta ABQ)}{an(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$

(a) Properties of Areas of Similar Triangles :

- (i) The areas of two similar triangles are in the ratio of the squares of corresponding altitudes.
- (ii) The areas of two similar triangles are in the ratio of the squares of the corresponding medians.
- (iii) The area of two similar triangles are in the ratio of the squares of the corresponding angle bisector segments.
- Ex.1 Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on this diagonals. [CBSE 2001]

CLASS 10

Sol. Given : A square ABCD. Equilateral triangles \triangle BCE and \triangle ACF have been

described on side BC and diagonals AC respectively.

To prove : Area (
$$\triangle$$
BCE) = $\frac{1}{2}$. Area (\triangle ACF)

Proof : Since \triangle BCE and \triangle ACF are equilateral. Therefore, they are equiangular (each

angle being equal to 60°) and hence $\triangle BCE \sim \triangle ACF$.

$$\Rightarrow \frac{\operatorname{Are}(ABC)E}{\operatorname{Are}(AAC)F} = \frac{BC^{2}}{AC^{2}}$$

$$\Rightarrow \frac{\operatorname{Are}(ABC)E}{\operatorname{Are}(AAC)F} = \frac{BC^{2}}{(\sqrt{2BC})^{2}} = \frac{1}{2}$$

$$\Rightarrow \frac{\operatorname{Are}(ABC)E}{\operatorname{Are}(AAC)F} = \frac{1}{2}$$

$$Hence Proved.$$

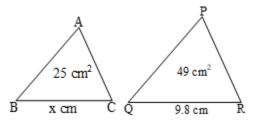
- **Ex.2** The areas of two similar triangles \triangle ABC and \triangle PQR are 25 cm² and 49 cm² respectively. If QR = 9.8 cm, find BC.
- **Sol.** It is being given that $\triangle ABC \sim \triangle PQR$, ar ($\triangle ABC$) = 25 cm² and ar ($\triangle PQR$) = 49 cm². We know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \frac{BC^2}{QR^2}$$

$$\Rightarrow \frac{25}{49} = \frac{x^2}{(9.8)^2}, \text{ where BC} = x \text{ cm}$$

$$\Rightarrow x^2 = \left(\frac{25}{49} \times 9.8 \times 9.8\right)$$

$$\Rightarrow x = \sqrt{\frac{25}{49} \times 9.8 \times 9.8} = \left(\frac{5}{7} \times 9.8\right) = (5 \times 1.4) = 7.$$



Hence BC = 7 cm.

CLASS 10

- **Ex.3** In two similar triangles ABC and PQR, if their corresponding altitudes AD and PS are in the ratio 4 : 9, find the ratio of the areas of ABC and PQR.
- **Sol.** Since the areas of two similar triangles are in the ratio of the squares of the corresponding altitudes.

$$\therefore \quad \frac{\text{Area}(\Delta ABC)}{\text{Area}(\Delta PQR)} = \frac{AD}{PS}$$

$$\Rightarrow \frac{\text{Area}\Delta ABC}{\text{Area}\Delta PQR} = \left(\frac{4}{9}\right)^2 = \frac{16}{81}$$

$$[:: AD : PS = 4 : 9]$$

Hence, Area (\triangle ABC) : Area (\triangle PQR) = 16 : 81

- **Ex.4** If $\triangle ABC$ is similar to $\triangle DEF$ such that $\triangle DEF = 64 \text{ cm}^2$, DE = 5.1 cm and area of $\triangle ABC = 9 \text{ cm}^2$. Determine the area of AB.
- **Sol.** Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides.

$$\therefore \quad \frac{\text{Area}(\Delta ABC)}{\text{Area}(\Delta DEF)} = \frac{AB}{DE}$$
$$\Rightarrow \quad \frac{9}{64} = \frac{AB}{(5.1)^2}$$

 \Rightarrow AB = $\sqrt{3.65}$

 \Rightarrow AB = 1.912 cm