ARITHMETIC PROGRESSIONS

GENERAL TERM AND SUM OF N TERM IN A.P

General Term of an A.P :

a, a + d, a + 2d, a + 3d.....represents an arithmetic progression where a is the first term and d the common difference. This is called the general form of an A.P. Let 'a' be the first term and 'd' be the common difference of an A.P. Then its n^{th} term is $a_n = a + (n - 1)d$

Sum of First n terms of an A.P.:

The sum S_n of n terms of an A.P. with first term 'a' and common difference 'd' is given by

(i)
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

(ii) $S_n = \frac{n}{2} [a+l]$ where $l = a + (n-1)d$, $l = last term$

NOTE : (i) If sum of n terms Sn is given then general term Tn = Sn - Sn - 1 where Sn-1 is sum

of (n–1) terms of A.P.

- (ii) Common difference of AP is given by d = S2 2S1 where S2 is sum of first two terms and S1 is sum of first term.
- **Ex.1** Find the sum of 20 terms of the A.P. 1,4,7,10.....

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$
$$S_{20} = \frac{20}{2} [2(1) + (20-1)3]$$

- **Ex.2** Find the sum of all three digit natural numbers. Which are divisible by 7.
- **Sol.** 1st no. is 105 and last no. is 994.

Find n 994 = 105 + (n + 1)7

- ∴ n = 128 ∴ Sum, $S_{128} = \frac{128}{2} [105+994]$
- **EX.3** The sum of three numbers in A.P. is 27, and their product is 504, find them
- **Sol.** Let the three terms be (a d), a and (a + d) where d is common different. It is given that (a d) + a + (a + d) = 27
 - 0r
 3a = 27

 \Rightarrow a = 9

 and
 (a d) (a) (a + d) = 504

 or
 $a(a^2 d^2) = 504$
 \Rightarrow $9(81 d^2) = 504$
 \Rightarrow $81 d^2 =$
 \Rightarrow $d^2 = 81 56 = 25$
 \Rightarrow $d^2 = 25$

 or
 d = +5 or
 d = -5

Therefore, the terms are: 9 - 5, 9, 9 + 5 = 4, 9, 14 **Ans.**

Selection of Terms in an A.P.:

No. of terms	Terms	Common difference
1	a-d, a , a+d	d
4	a-3d, a-d, a+d, a+3d	2d
5	a-2d, a-d, a, a+d, a+2d	d
6	a-5d, a-3d, a-d, a+d, a+3d, a+5d	2d

Ex.4 The sum of three number in A.P. is -3 and their product is 8. Find the numbers.

Sol. Three no. 's in A.P. be a - d, a, a + d

 $\therefore \qquad a - d + a + a + d = -3$

 $3a = -3 \Rightarrow a = -1$

& (a - d) a (a + d) = 8

$$a(a^2 - d^2) = 8$$

$$(-1)(1 - d^2) = 8$$

$$1 - d^2 = -8$$

 \Rightarrow d² = 9

$$\Rightarrow$$
 d = ± 3

If a = 8 & d = 3 numbers are -4, -1, 2.

If a = 8 & d = - numbers are 2, -1, -4.

- **Ex.5** The nth term of a sequence is 3n 2. Is the sequence an A.P. ? If so, find its 10th term.
- **Sol.** We have $a_n = 3n 2$

Clearly a_n is a linear expression in n. So, the given sequence is an A.P. with common difference 3.

Putting n = 10, we get

$$a_{10} = 3 \times 10 - 2 = 28$$

Ex.6 Determine the A.P. whose their term is 16 and the difference of 5th term from 7th term is 12.

MATHS

Sol. Given : $a_3 = a + (3 - 1) d = a + 2d = 16$ (i) $a_7 - a_5 = 12$ (ii) (a + 6d) - (a + 4d) = 12 a + 6d - a - 4d = 12 2d = 12 d = 6Put d = 6 in equation (i) a = 16 - 12 a = 4∴ A.P. is 4, 10, 16, 22, 28,

Ex.7 Find the 12th, 24th and nth term of the A.P. given by 9, 13, 17, 21, 25,

Sol. We have,

a = First term = 9 and,

d = Common difference = 4

[:: 13 - 9 = 4, 17 - 13 = 4, 21 - 7 = 4 etc.]

We know that the nth term of an A.P. with first term a and common difference d is given by

 $a_n = a + (n - 1) d$

Therefore,

$$a_{12} = a + (12 - 1) d$$

= a + 11d = 9 + 11 × 4 = 53
$$a_{24} = a + (24 - 1) d$$

= a + 23 d = 9 + 23 × 4 = 101

and, $a_n = a + (n - 1) d$ = 9 + (n - 1) × 4 = 4n + 5 $a_{12} = 53, a_{24} = 101 \text{ and } a_n = 4n + 5$

- **Ex.8** Which term of the sequence –1, 3, 7, 11,, is 95?
- **Sol.** Clearly, the given sequence is an A.P.

We have,

a = first term = -1 and,

d = Common difference = 4.

Let 95 be the nth term of the given A.P. then,

a_n = 95

$$\Rightarrow$$
 a + (n - 1) d = 95

$$\Rightarrow -1 + (n-1) \times 4 = 95$$

 \Rightarrow -1+4n-4=95 \Rightarrow 4n-5=95

$$\Rightarrow 4n = 100 \qquad \Rightarrow n = 25$$

Thus, 95 is 25th term of the given sequence.

- **Ex.9** Which term of the sequence 4, 9, 14, 19, is 124?
- **Sol.** Clearly, the given sequence is an A.P. with first term a = 4 and common difference d = 5.

Let 124 be the n^{th} term of the given sequence. Then, $a_n = 124$

a + (n - 1) d = 124

 \Rightarrow 4 + (n - 1) × 5 = 124

 \Rightarrow n = 25

Hence, 25th term of the given sequence is 124

Ex.10 Which term of the sequence 72, 70, 68, 66, is 40?

Sol. Here 1^{st} term x = 72 and common difference d = 70 - 72 = -2

 \therefore For finding the value of n

$$a_n = a + (n - 1)d$$

- \Rightarrow 40 = 72 + (n 1) (-2)
- $\Rightarrow \qquad 40 72 = -2n + 2$
- $\Rightarrow -32 = -2n + 2$
- \Rightarrow -34 = 2n
- \Rightarrow n = 17
- \therefore 17th term is 40.

nth term of an A.P. from the end:

If 'a' be the first term and 'd' be the common difference of an A.P. having 'm' terms. Then the n^{th} term from the end is $(m - n + 1)^{th}$ term from the beginning.

 $[n^{th} \text{ term from the end: } a_{m-n+1} = [a + (m - n + 1 - 1)d] = [a + (m - n)d]$

Note :

- (i) General term is also denoted by λ (last term)
- (ii) n (No. of terms) always belongs to set of natural numbers.
- (iii) Common difference can be zero, + ve or ve.

 $d = 0 \Rightarrow$ then all terms of AP are same

- **Ex.11** Find 20th term from the end of an A.P. 3,7,11..... 407.
- **Sol.** $407 = 3 + (n 1)4 \Rightarrow n = 102$

 $\therefore 20^{\text{th}}$ term from end $\Rightarrow m = 20$

 $a_{102-(20-1)} = a_{102-19} = a_{83}$ from the beginning.

 $a_{83} = 3 + (83 + 1)4 = 331.$

Ex.12 Determine the 10th term from the end of the A.P. 4, 9, 14,, 254.

Sol. We have,

l = Last term = 254 and,

d = Common difference = 5,

 10^{th} term from the end = l - (10 - 1) d

 $= l - 9d = 254 - 9 \times 5 = 209.$