CLASS 10

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

ALGEBRAIC METHOD TO SOLVE LINEAR EQUATION OF TWO VARIABLE

Algebraic Method to Solve Linear Equation of Two Variable

There are three methods for solving the linear equation

- (i) Substitution method
- (ii) Elimination method
- (iii) Cross-multiplication method

(i) Substitution method

- **Step-I:** Obtain the two equation: $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$
- **Step–II:** Find the value of one variable, say y in terms of the other variable.
- **Step–III:** Substitute this value of y in the other equation and reduce it to an equation in one variable.
- **Ex. 1** Solve the following pair of equations by substitution method: 2x + 3y = 9; 3x + 4y = 5
- Sol. Step-I: $2x + 3y = 9 \dots (i)$ $y = \left(\frac{9-2x}{3}\right) \dots (ii)$

1 -

Step–II: Substitute the value of *x* in equation 3x + 4y = 5

$$3x+4\left(\frac{9-2x}{3}\right)=5 ; 9x+36-8x=15$$

{x = -21}
x = -21

Step–III: Putting the value of *x* in equation (ii),

$$y = \left(\frac{9 - 2(-21)}{3}\right)$$
$$y = \frac{9 + 42}{3}$$
$$= y = 51/3 \quad [y = 17]$$

Therefore the solution of the given system of equation is x = -21, y = 17

Ex.2 Solve the following pair of equations by substitution method:

$$x + 4y = 14$$
(i)
 $7x - 3y = 5$ (ii)

Sol. From equation (i) x = 14 - 4y(iii)

Substitute the value of x in equation (ii)

$$\Rightarrow 7 (14 - 4y) - 3y = 5$$

$$\Rightarrow 98 - 28y - 3y = 5$$

$$\Rightarrow 98 - 31y = 5$$

$$\Rightarrow 93 = 31y$$

$$\Rightarrow y = \frac{93}{31} \Rightarrow y = 3$$

Ex.3 Solve each of the following system of equations by eliminating x (by substitution) :

(i) x + y = 7(ii) x + y = 7(iii) x + y = 7(iii) 2x - 7y = 1(iv) 3x - 5y = 1(v) 5x + 8y = 9(v) 5x + 8y = 9(v) 5x + 8y = 9(v) 5x + 3y = 4(i) We have ; x + y = 7....(1)

Sol.

$$2x - 3y = 11$$
(2)

CLASS 10

We shall eliminate x by substituting its value from one equation into the other. from equaton (1), we get ;

 $x + y = 7 \implies x = 7 - y$

Substituting the value of x in equation (2), we get ;

$$2 \times (7 - y) - 3y = 11$$

$$\Rightarrow 14 - 2y - 3y = 11$$

 \Rightarrow -5y = -3 or, y = 3/5.

Now, substituting the value of y in equation (1), we get;

$$x + 3/5 = 7 \qquad \Rightarrow x = 32/5.$$

Hence, x = 32/5 and y = 3/5.

(ii) We have,

x + y = 7(1)

12x + 5y = 7(2)

From equation (1), we have;

$$\mathbf{x} + \mathbf{y} = \mathbf{7}$$

 \Rightarrow x = 7 - y

Substituting the value of y in equation (2), we get ;

$$\Rightarrow 12(7 - y) + 5y = 7$$

$$\Rightarrow 84 - 12y + 5y = 7$$

$$\Rightarrow -7y = -77$$

$$\Rightarrow y = 11$$

Now, Substituting the value of y in equation (1), we get ;

 $x + 11 = 7 \qquad \Rightarrow x = -4$

Hence, x = -4, y = 11.

MATHS

(iii) We have;

$$2x - 7y = 1$$
(1)

4x + 3y = 15....(2)

From equation (1), we get

_

$$2x - 7y = 1 \qquad \Rightarrow x = \frac{7y + 1}{2}$$

Substituting the value of x in equation (2), we get ;

$$\Rightarrow 4 \times \frac{7y+1}{2} + 3y = 15$$
$$\Rightarrow \frac{28y+4}{2} + 3y = 15$$
$$\Rightarrow 28y + 4 + 6y = 30$$
$$\Rightarrow 34y = 26 \qquad \Rightarrow y = \frac{26}{34} = \frac{13}{17}$$

Now, substituting the value of y in equation (1), we get;

$$2x - 7 \times \frac{13}{17} = 1$$

$$\Rightarrow 2x = 1 + \frac{91}{17} = \frac{108}{17} \Rightarrow x = \frac{108}{34} = \frac{54}{17}$$

Hence, $x = \frac{54}{17}$, $y = \frac{13}{17}$

(iv) We have ;

> (1) 3x - 5y = 1

$$5x + 2y = 19$$
 (2)

From equation (1), we get;

$$3x - 5y = 1 \qquad \Rightarrow x = \frac{5y+1}{3}$$

Substituing the value of x in equation (2), we get ;

$$\Rightarrow 5 \times \frac{5y+1}{3} + 2y = 19$$
$$\Rightarrow 25y + 5 + 6y = 57 \Rightarrow 31y = 52$$

CLASS 10

MATHS

Thus, $y = \frac{52}{31}$

Now, substituting the value of y in equation (1), we get;

$$3x - 5 \times \frac{52}{31} = 1$$

$$\Rightarrow 3x - \frac{260}{31} = 1 \Rightarrow 3x = \frac{291}{31}$$

$$\Rightarrow x = \frac{291}{31 \times 3} = \frac{97}{31}$$

Hence, $x = \frac{97}{31}$, $y = \frac{52}{31}$

(v) We have,

$$5x + 8y = 9$$
(1)

$$2x + 3y = 4$$
(2)

From equation (1), we get;

$$5x + 8y = 9 \qquad \Rightarrow x = \frac{9 - 8y}{5}$$

Substituting the value of x in equation (2), we get ;

$$\Rightarrow 2 \times \frac{9-8y}{5} + 3y = 4$$
$$\Rightarrow 18 - 16y + 15y = 20$$
$$\Rightarrow -y = 2 \text{ or } y = -2$$

Now, substituting the value of y in equation (1), we get ;

$$5x + 8(-2) = 9$$

$$\Rightarrow 5x = 25 \qquad \Rightarrow x = 5$$

Hence, x = 5, y = -2.

Now substitute value of y in equation (iii)

$$\Rightarrow \qquad 7x - 3(3) = 5$$

 \Rightarrow 7x - 3 (3) = 5

MATHS

 $\Rightarrow \qquad 7x = 14$ $\Rightarrow \qquad x = \frac{14}{7} = 2$

So, solution is x = 2 and y = 3

Elimination by Equating The Coefficient