POLYNOMIALS

TYPES OF POLYNOMIALS

TYPES OF POLYNOMIALS

(A) BASED ON DEGREE	If degree of polynomial is
---------------------	----------------------------

			Examples
1	One	Linear	$x + 3, y - x + 2, \sqrt{3}x - 3$
2	Two	Quadratic	$2x^2 - 7, \frac{1}{3}x^2 + y^2 - 2xy, x^2 + 1 + 3y$
3	Three	Cubic	x ³ + 3x ² -7x+8, 2x ² +5x ³ +7,
4	Four	bi-quadratic	$x^4 + y^4 + 2x^2y^2$, $x^4 + 3$,

(B) BASED ON TERMS: If number of terms in polynomial is

			Examples
1.	One	Monomial	7x, 5x ⁹ , $\frac{7}{3}$ x ¹⁶ , xy,
2.	Two	Binomial	$2 + 7y^6, y^3 + x^{14}, 7 + 5x^9,$
3.	Three	Trinomial	$x^3 - 2x + y$, $x^{31} + y^{32} + z^{33}$,

CLASS 10

MATHS

- **Note** : (1) Degree of constant polynomials (**Ex.5**, 7, -3, 8/5, ...) is zero.
 - (2) Degree of zero polynomial (zero = 0 = zero polynomial) is not defined.

POLYNOMIAL IN ONE VARIABLE

If a polynomial has only one variable then it is called polynomial in one variable.

Ex. $P(x) = 2x^3 + 5x - 3$	Cubic trinomial
$Q(x) = 7x^7 - 5x^5 - 3x^3$	+ x + 3 polynomial of degree 7
R(y) = y	Linear, monomial
$S(t) = t^2 + 3$	Quadratic Binomial

Note: General form of a polynomial in one variable x of degree 'n'

is $a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_2x^2 + a_1x + a_0$, $a_n^{-1} 0$, where a_n , a_{n-1} ,... a_2 , a_1 , a_0 all are constants.

for linearax + b, $a^{1} 0$ for quadratic $ax^{2} + bx + c$, $a^{1} 0$ for cubic $ax^{3} + bx^{2} + cx + d$, $a^{1} 0$

REMAINDER THEOREM

- (i) Remainder obtained on dividing polynomial p(x) by x a is equal to p(a).
- (ii) If a polynomial p(x) is divided by (x + a) the remainder is the value of p(x) at x = -a.
- (iii) (x a) is a factor of polynomial p(x) if p(a) = 0
- (iv) (x + a) is a factor of polynomial p(x) if p(-a) = 0
- (v) (x-a)(x-b) is a factor of polynomial p(x), if p(a) = 0 and p(b) = 0.

CLASS 10

Ex.1 Find the remainder when $4x^3 - 3x^2 + 2x - 4$ is divided by

(a)
$$x - 1$$
 (b) $x + 2$ (c) $x + \frac{1}{2}$

Sol. Let $p(x) = 4x^3 - 3x^2 + 2x - 4$

(a) When p(x) is divided by (x – 1), then by remainder theorem, the required remainder will be p(1)

$$p(1) = 4 (1)^{3} - 3(1)^{2} + 2(1) - 4$$
$$= 4 \times 1 - 3 \times 1 + 2 \times 1 - 4$$
$$= 4 - 3 + 2 - 4 = -1$$

(b) When p(x) is divided by (x + 2), then by remainder theorem, the required remainder will be p(-2).

$$p(-2) = 4 (-2)^3 - 3 (-2)^2 + 2(-2) - 4$$
$$= 4 \times (-8) - 3 \times 4 - 4 - 4$$
$$= -32 - 12 - 8 = -52$$

(c) When p(x) is divided by, $\left(x+\frac{1}{2}\right)$ then by remainder theorem, the required

remainder will be

$$p\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right) - 4$$
$$= 4 \times \left(-\frac{1}{8}\right) - 3 \times \frac{1}{4} - 2 \times \frac{1}{2} - 4$$
$$= -\frac{1}{2} - \frac{3}{4} - 1 - 4 = \frac{1}{2} - \frac{3}{4} - 5$$
$$= \frac{-2 - 3 - 20}{4} = \frac{-25}{4}$$