POLYNOMIALS

RELATION BETWEEN ZEROS OF POLYNOMIALS

RELATIONSHIP BETWEEN ZEROS AND COEFFICIENTS OF A QUADRATIC POLYNOMIAL :

Let α and β be the zeros of a quadratic polynomial $f(x) = ax^2 + bx + c$. By factor theorem (x- α) and (x- β) are the factors of f(x).

 $f(x) = k (x-\alpha)(x-\beta)$ are the factors of f(x)

$$\Rightarrow \qquad ax^2 + bx + c = k\{x^2 - (\alpha + \beta)x + \alpha \}$$

$$\Rightarrow \quad ax^2 + bx + c = kx^2 - k(\alpha + \beta)x + k\alpha\beta$$

Comparing the coefficients of x^2 , x and constant terms on both sides, we get

$$a = k, b = -k (\alpha + \beta) and k\alpha \beta$$

$$\Rightarrow \quad \alpha + \beta = -\frac{b}{a} \text{ and } \alpha \beta = \frac{c}{a}$$

$$\Rightarrow \quad \alpha + \beta = -\frac{\text{Coefficteorf}x}{\text{Coefficteorf}x^2} \text{ and } \beta = \frac{\text{Contsart term}}{\text{Coefficteorf}x^2}$$

Hence,

Sum of the zeros
$$=-\frac{b}{a}=-\frac{Coeffictenfx}{Coeffictenfx^2}$$

Product of the zeros $=\frac{c}{a}=\frac{Contsart term}{Coefficterfx^2}$

REMARKS:

If α and β are the zeros of a quadratic polynomial f (x). The, the polynomial f (x) is given by

$$F(x) = k \{x^2 - (\alpha + \beta)x + \alpha\beta\}$$

Or $f(x) = k \{ x^2 - (Sum of the zeros) x + Product of the zeros \}$

Ex.1 Find the zeros of the quadratic polynomial $f(x) = x^2 - 2x - 8$ and verify and the relationship between the zeros and their coefficients.

Sol.
$$f(x) = x^2 - 2x - 8$$

 $\Rightarrow f(x) = x^2 - 4x + 2x - 8$

$$\Rightarrow f(x) = x(x-4) + 2(x-4)]$$

$$\Rightarrow f(x) = (x - 4) (x + 2)$$

Zeros of f(x) are given by f(x) = 0

$$\Rightarrow x^2 - 2x - 8 = 0$$

$$\Rightarrow (x-4)(x+2) = 0$$

$$\Rightarrow$$
 x = 4 or x = -2

So,
$$\alpha = 4$$
 and $\beta = -2$

 \therefore sum of zeros $\alpha+\beta=4$ - 2 = 2

Also, sum of zeros = $-\frac{\text{Coeffictenfx}}{\text{Coeffictenfx}^2} = \frac{-(-2)}{1} = 2$

So, sum of zeros = $\alpha + \beta = -\frac{\text{Coeffictenfx}}{\text{Coeffictenfx}^2}$

Now, product of zeros $=\alpha\beta$ =(4) (-2) = -8

Also, product of zeros $=\frac{\text{Contsart term}}{\text{Coefficterf}x^2} = \frac{-8}{1} = -8$

$$\therefore \quad \text{Product of zeros} = \frac{\text{Contant term}}{\text{Coeffictenf}x^2} = \alpha \beta$$

Ex.2 Find a quadratic polynomial whose zeros are $5 + \sqrt{2}$ and $5 - \sqrt{2}$

Sol. Given
$$\alpha = 5 + \sqrt{2}, \beta = 5 - \sqrt{2}$$

$$\therefore f(\mathbf{x}) = k\{\mathbf{x}^2 - \mathbf{x}(\alpha + \beta) + \alpha \beta\}$$

Here,
$$\alpha + \beta = 5 + \sqrt{2} + 5 - \sqrt{2} = 10$$

and $\alpha\beta = (5+\sqrt{2})(5-\sqrt{2})$

$$= 25 - 2 = 23$$

- \therefore f(x) = k {x² 10x + 23}, where, k is any non-zero real number.
- **Ex.3** Sum of product of zeros of quadratic polynomial are 5 and 17 respectively. Find the polynomial.
- **Sol.** Given : Sum of zeros = 5 and product of zeros = 17

So, quadratic polynomial is given by

 \Rightarrow f(x) = k {x² - x(sum of zeros) + product of zeros}

 \Rightarrow f(x) = k{x² - 5x + 17}, where, k is any non-zero real number,

RELATIONSHIP BETWEEN ZEROS AND COEFFICIENTS OF A CUBIC POLYNOMIAL :

Let α, β, γ be the zeros of a cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$, $a \neq 0$ Then, by factor theorem, $a-\alpha, x-\beta$ and $x-\gamma$ are factors of f(x). Also, f(x) being a cubic polynomial cannot have more than three linear factors.

$$f(x) = k(x-\alpha)(x-\beta)(x-\gamma)$$

$$\Rightarrow ax^3 + bx^2 + cx + d = k (x-\alpha)(x-\beta)(x-\gamma)$$

$$\Rightarrow ax^3 + bx^2 + cx + d = k\{x^3 - (\alpha+\beta+\gamma)x^2 + (\alpha\beta+\beta\gamma+\gamma\alpha)x - \alpha\beta\gamma\}$$

$$\Rightarrow ax^3 + bx^2 + cx + d = kx^3 - k (\alpha+\beta+\gamma)x^2 + k(\alpha\beta+\beta\gamma+\gamma\alpha)x - k\alpha\beta\gamma$$

Comparing the coefficients of x^3 , x^2 , x and constant terms on both sides, we get

$$a = k, b = -k (\alpha + \beta + \gamma), c = (\alpha \beta + \beta \gamma + \gamma \alpha) \text{ and } d = -k(\alpha \beta)$$

$$\Rightarrow \alpha + \beta + \gamma = -\frac{b}{a}$$

$$\Rightarrow \alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$$
And, $\alpha \beta \gamma = -\frac{d}{a}$

$$\Rightarrow \text{ Sum of the zeros } = -\frac{b}{a} = -\frac{\text{Coeffictenf} x^2}{\text{Coeffictenf} x^3}$$

$$\Rightarrow \text{ Sum of the products of the zeros taken two at a time } = \frac{c}{a} = \frac{\text{Coeffictenf} x^3}{\text{Coeffictenf} x^3}$$

$$\Rightarrow \text{ Product of the zeros } = -\frac{d}{a} = -\frac{\text{Context term}}{\text{Coeffictenf} x^3}$$

REMARKS:

Cubic polynomial having α , β and γ as its zeros is given by

$$f(x) = k (x - \alpha)(x - \beta)(x - \gamma)$$

$$f(x) = k \left\{ x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma \right\} \text{ where } k \text{ is any non-zero real number.}$$

Ex.4 Verify that $\frac{1}{2}$, 1–2 are zeros of cubic polynomial $2x^3 + x^2 - 5x + 2$. Also verify the relationship between, the zeros and their coefficients.

Sol.
$$f(x) = 2x^3 + x^2 - 5x + 2$$

 $f(\frac{1}{2}) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2 - 5(\frac{1}{2}) + 2$
 $= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$

MATHS

$$f(1) = 2()^{3} + (1)^{2} 5(1) + 2 = 2 + 1 - 5 + 2 = 0.$$

$$f(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2 = -16 + 4 + 10 + 2 = 0.$$

Let $\alpha = \frac{1}{2}, \beta = 1$ and $\gamma = -2$

Now, Sum of zeros $=\alpha + \beta + \gamma$

$$=\frac{1}{2}+1-2 = -\frac{1}{2}$$

Also, sum of zeros = $-\frac{(\text{Coeffictenf}x^2)}{\text{Coeffictenf}x^3} = -\frac{1}{2}$

So, sum of zeros = $\alpha + \beta + \gamma = -\frac{(Coeffictenfx^2)}{Coeffictenfx^3}$

Sum of product of zeros taken two at a time = $\alpha\beta$ + $\beta\gamma$ + $\gamma\alpha$

$$=\frac{1}{2} \times 1 + 1 \times (-2) + (-2) \times \frac{1}{2}$$
$$= -\frac{5}{2}$$

Also, $\beta\beta+\beta\gamma+\gamma\alpha=\frac{Coeffictenfx}{Coeffictenfx^3}=\frac{-5}{2}$

So, sum of product of zeros taken two at a time = $\alpha\beta+\beta\gamma+\gamma\alpha=\frac{Coefficterfx}{Coefficterfx^3}$

Now, Product of zeros =
$$\alpha\beta\gamma$$
 = $(\frac{1}{2})(1)(-2) = -1$

Also, product of zeros = $\frac{\text{Contsart term}}{\text{Coefficterf}x^3} = \frac{-2}{2} = -1$

Product zeros = $\alpha\beta \not\models -\frac{\text{Conteart term}}{\text{Coefficterf}x^3}$

Ex.5 Find a polynomial with the sum, sum of the product of its zeros taken two at a time, and product its zeros as 3, -1 and -3 respectively.

Sol. Given
$$\alpha + \beta + \gamma = 3$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = -1$ and $\alpha\beta\gamma = -3$

So, polynomial $f(x) = k \{x^3 - x^2 (\alpha + \beta + \gamma) + x(\alpha \beta + \beta \gamma + \gamma \alpha) - \alpha \beta^*\}$

 $f(x) = k \{x^3 - 3x^2 - x + 3\}$, where k is any non-zero real number.

Some useful relations involving a and b :

1.
$$a^{2} + b^{2} = (a + b)^{2} - 2ab$$

2. $(a - b)^{2} = (a + b)^{2} - 4ab$
3. $a^{2} - b^{2} = (a + b) (a - b) = (a + b)$
 $\sqrt{(\alpha + \beta)^{2} - 4\alpha\beta}$
4. $a^{3} + b^{3} = (a + b)^{3} - 3ab (a + b)$

5.
$$a^3 - b^3 = (a - b)^3 + 3ab (a - b)$$

6.
$$a^4 + b^4 = [(a + b)^2 - 2ab]^2 - 2(ab)^2$$

7. $a^4 - b^4 = (a^2 + b^2) (a^2 - b^2)$ then use (1) and (3)

Ex.6 If a and b are the zeroes of the polynomial $ax^2 + bx + c$. Find the value of

(i)
$$a - b$$
 (ii) $a^2 + b^2$.

Sol. Since a and b are the zeroes of the polynomial $ax^2 + bx + c$.

$$a + b = -\frac{b}{a}; ab = \frac{c}{a}$$

(i)
$$(a-b)^2 = (a+b)^2 - 4ab$$

$$= \left(-\frac{b}{a}\right)^2 - \frac{4c}{a} = \frac{b^2}{a^2} - \frac{4c}{a} = \frac{b^2 - 4ac}{a^2}$$
$$a - b = \frac{\sqrt{b^2 - 4ac}}{a}$$

(ii)
$$a^2 + b^2 = a^2 + b^2 + 2ab - 2ab$$

= $(a + b)^2 - 2ab$
= $\left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2 - 2ac}{a^2}$

TO FORM A QUADRATIC POLYNOMIAL WITH THE GIVEN ZEROES

Let zeroes of a quadratic polynomial be α and β .

The obviously the quadratic polynomial is

$$(x - \alpha) (x - \beta)$$

i.e. $x^2 - (\alpha + \beta)x + \alpha\beta$

 x^2 – (Sum of the zeroes) x + Product of the zeroes

Ex.7 Form the quadratic polynomial whose zeroes are 4 and 6.

Sol. Sum of the zeroes = 4 + 6 = 10

Product of the zeroes = $4 \times 6 = 24$

Hence the polynomial formed

 $= x^2 - (sum of zeroes) x + Product of zeroes$

 $= x^2 - 10x + 24$

Ex.8 Form the quadratic polynomial whose zeroes are –3, 5.

Sol. Here, zeroes are – 3 and 5.

Sum of the zeroes = -3 + 5 = 2

Product of the zeroes = $(-3) \times 5 = -15$

Hence the polynomial formed = x^2 – (sum of zeroes) x + Product of zeroes

 $= x^2 - 2x - 15$

Ex.9 Find a quadratic polynomial whose sum of zeroes and product of zeroes are respectively-

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, $\sqrt{5}$

Sol. Let the polynomial be $ax^2 + bx + c$ and its zeroes be a and b.

(i) Here,
$$a + b = \frac{1}{4}$$
 and $a \cdot b = -1$

Thus the polynomial formed

$$= x^2 - (Sum of zeroes) x + Product of zeroes$$

$$= x^{2} - \left(\frac{1}{4}\right)x - 1 = x^{2} - \frac{x}{4} - 1$$

The other polynomial are $k\left(x^2 - \frac{x}{4} - 1\right)$

If k = 4, then the polynomial is $4x^2 - x - 4$.

(ii) Here,
$$a + b = \sqrt{2}$$
, $ab = \frac{1}{3}$

Thus the polynomial formed

 $= x^{2} - (\text{Sum of zeroes}) x + \text{Product of zeroes}$ $= x^{2} - (\sqrt{2}) x + \frac{1}{3} \text{ or } x^{2} - \sqrt{2} x + \frac{1}{3}$

Other polynomial are $k\left(x^2 - \sqrt{2}x + \frac{1}{3}\right)$

If k = 3, then the polynomial is

$$3x^2 - 3\sqrt{2}x + 1$$

(iii) Here,
$$a + b = 0$$
 and $a.b = \sqrt{5}$

Thus the polynomial formed

=
$$x^2$$
 – (Sum of zeroes) x + Product of zeroes
= x^2 – (0) x + $\sqrt{5}$ = x^2 + $\sqrt{5}$