POLYNOMIALS

DIVISION ALGORITHM OF POLYNOMIALS

WORKING RULE TO DIVIDE A POLYNOMIAL BY ANOTHER POLYNOMIAL

- **Step 1:** First arrange the term of dividend and the divisor in the decreasing order of their degrees.
- **Step 2 :** To obtain the first term of quotient divide the highest degree term of the dividend by thehighest degree term of the divisor.
- **Step 3 :** To obtain the second term of the quotient, divide the highest degree term of the new dividend obtained as remainder by the highest degree term of the divisor.
- **Step 4 :** Continue this process till the degree of remainder is less than the degree of divisor.

Division Algorithm for Polynomial

If p(x) and g(x) are any two polynomials with $g(x)^{1} 0$, then we can find polynomials q(x)

and r(x) such that $p(x) = q(x) \times g(x) + r(x)$

where r(x) = 0 or degree of r(x) < degree of g(x).

The result is called Division Algorithm for polynomials.

 $Dividend = Quotient \times Divisor + Remainder$

Ex.1 Divide $3x^3 + 16x^2 + 21x + 20$ by x + 4.

Sol.

Quotient = $3x^2 + 4x + 5$

Remainder = 0

Ex.2 Apply the division algorithm to find the quotient and remainder on dividing p(x) by g(x) as given below :

$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

Sol. We have,

$$p(x) = x^{3} - 3x^{2} + 5x - 3 \text{ and } g(x) = x^{2} - 2$$

$$x^{2} - 2 \begin{bmatrix} x - 3 \\ x^{3} - 3x^{2} + 5x - 3 \\ x^{3} - 2x \end{bmatrix}$$
First term of quotient is $\frac{x^{3}}{x^{2}} = x$

$$\frac{-}{-3x^{2} + 7x - 3}$$
Second term of quotient is $\frac{-3x^{2}}{x^{2}} = -3$

$$\frac{+}{-7x - 9}$$

We stop here since

degree of $(7x - 9) < degree of (x^2 - 2)$

So, quotient = x - 3, remainder = 7x - 9

Therefore,

Quotient × Divisor + Remainder

=
$$(x-3)(x^2-2) + 7x - 9$$

= $x^3 - 2x - 3x^2 + 6 + 7x - 9$
= $x^3 - 3x^2 + 5x - 3$ = Dividend

Therefore, the division algorithm is verified.

Ex.3 On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Sol.
$$p(x) = x^3 - 3x^2 + x + 2$$

q(x) = x - 2 and r(x) = -2x + 4

By Division Algorithm, we know that

 $p(x) = q(x) \times g(x) + r(x)$

Therefore,

$$x^{3} - 3x^{2} + x + 2 = (x - 2) \times g(x) + (-2x + 4)$$

$$\Rightarrow x^{3} - 3x^{2} + x + 2 + 2x - 4 = (x - 2) \times g(x)$$

$$\Rightarrow g(x) = \frac{x^{3} - 3x^{2} + 3x - 2}{x - 2}$$

On dividing $x^3 - 3x^2 + 3x - 2$ by x - 2,

we get g(x)

$$x-2 \underbrace{ \begin{array}{c} x^{2}-x+1 \\ x^{3}-3x^{2}+3x-2 \\ \underline{x^{3}-2x^{2}} \\ -\underline{x^{2}+3x-2} \\ -\underline{x^{2}+3x-2} \\ -\underline{x^{2}+2x} \\ \underline{x^{2}-x^{2}+2x} \\ \underline{x^{2}-x^{2}+2x} \\ \underline{x^{2}-x^{2}+2x} \\ \underline{x^{2}-x^{2}+2x} \\ \underline{x^{2}-x^{2}-x^{2}-x^{2}} \\ \underline{x^{2}-x^{2$$

Hence, $g(x) = x^2 - x + 1$.

Ex.4 If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k & a.

$$x^{2}-2x+k \xrightarrow{x^{2}-4x+(8-k)} x^{4}-6x^{3}+16x^{2}-25x+10} x^{4}-2x^{3}+x^{2}k = -\frac{-4x^{3}+x^{2}(16-k)-25x+10}{-4x^{3}+x^{2}(16-k)-25x+10} x^{2}[8-k]+x[4k-25]+10 x^{2}[8-k]-2x[8-k]+k(8-k) x^{2}[8-k]-2x[8-k]-2x[8-k]+k(8-k) x^{2}[8-k]-2x[8-k]-2x[8-k]+k(8-k) x^{2}[8-k]-2x[8-k]-2$$

Sol.

According to questions, remainder is x + a

- \therefore coefficient of x = 1
- $\Rightarrow 2k 9 = 1$
- \Rightarrow k = (10/2) = 5

Also constant term = a

- $\Rightarrow k^{2} 8k + 10 = a P (5)^{2} 8(5) + 10 = a$ $\Rightarrow a = 25 40 + 10$
- \Rightarrow a = 5
- ∴ k = 5, a = -5